
www.manaraa.com

INFORMATION TO USERS

While the most advanced technology has been used to
photograph and reproduce this manuscript, the quality of
the reproduction is heavily dependent upon the quality of
the material submitted. For example:

• Manuscript pages may have indistinct print. In such
cases, the best available copy has been filmed.

• Manuscripts may not always be complete. In such
cases, a note will indicate tha t it is not possible to
obtain missing pages.

• Copyrighted m aterial may have been removed from
the manuscript. In such cases, a note will indicate the
deletion.

Oversize materials (e.g., maps, drawings, and charts) are
photographed by sectioning the original, beginning at the
upper left-hand com er and continuing from left to right in
equal sections with small overlaps. Each oversize page is
also film ed as one exposure and is available, for an
additional charge, as a standard 35mm slide or as a 17”x 23”
black and white photographic print.

Most photographs reproduce accep tab ly on positive
microfilm or microfiche but lack the clarity on xerographic
copies made from the microfilm. For an additional charge,
35mm slides of 6”x 9” black and white photographic prints
are available for any photographs or illustrations that
cannot be reproduced satisfactorily by xerography.

www.manaraa.com

www.manaraa.com

8703559

Hochstettler, W illiam Henry, III

A MODEL FOR SUPPORTING MULTIPLE SOFTWARE ENGINEERING
METHODS IN A SOFTWARE ENVIRONMENT

The Ohio S ta te University Ph.D. 1986

University
Microfilms

International 300 N. Z eeb R oad , Ann Arbor, Ml 48106

Copyright 1986

by

Hochstettler, William Henry, III

All Rights Reserved

www.manaraa.com

www.manaraa.com

A MODEL FOR SUPPORTING MULTIPLE SOFTWARE

ENGINEERING METHODS IN A SOFTWARE ENVIRONMENT

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of the Ohio State University

BY

William Henry Hochstettler III> B.S., M.S.

■ * # *

The Ohio State University

1986

Dissertation Committee: Approved by

J. Ramanathan

W. F. Ogden

D. S. Kerr

Department of Computer
and Information Science

www.manaraa.com

Copyright by
William Henry Hochstettler III

1986

www.manaraa.com

Dedicated to my mother, Edna M. Hochstettler, who was unable
to witness the fulfillment of this goal.

i i

www.manaraa.com

A C K N O W L E D G E M E N T S

The author gratefully acknowledges the support,
dedication and time that Jay Ramanathan willing gave for the
completion of this dissertation. Bill Ogden and Doug Kerr,
as members of the reading committee, contributed much to the
quality and readability of the dissertation and their time
is appreciated. The contributions of the TRIAD group,
Thorbjorn Andersson, Ron Hartung, Merete Jordal, Walt
McKnight, Ronnie Sarkar and Robert VermiIyer did much to
inspire and solidify many of the ideas presented in the
dissertat ion. Over the years many colleagues and faculty
members have had the belief in my abilities to encourage me
to achieve this goal. This list includes: Kevin O ’Kane for
starting me on computer science research at the graduate
level, Paul deMaine, for advising my Master’s degree at the
Pennsylvania State University, Larry Rose for overseeing my
generals examination and Charley Shubra for encouraging me
to join the TRIAD Research Group. The assistance-provided
by the International Business Machines Corporation both in
equipment and research funding for the implementation of the
TRIAD model is greatly appreciated. Finally, the moral
support provided by my parents and the sacrifices made by my
wife to enable me to complete this ambition is beyond
repayment,.

i i i

www.manaraa.com

VITA

January 23, 1 9 5 1 Born Toledo> Ohio

1970-1972................... Engineering Practice Program
Summers only at Owens-Corning
Fiberglas Corp., Toledo, Ohio

1973......................... B.S., Washington University in
St. Louis, Missouri

197A-1975................... Programmer-Analyst , St. Louis
County Government, Clayton,
M i ssour i

1977......................... M.S., The Pennsylvania State
University, State College,
Pennsy1 van i a

1978-1980................... Graduate Research Assistant,
OCLC, Inc., Columbus, Ohio

1980— 1984................... Research Scientist, Battelle
Columbus' Laboratories, Columbus,
Oh io

1983......................... Adjunct Faculty member Franklin
• University and Capital

University, Columbus, Ohio

198A Applications Programming Manager
Health Development Incorporated,
Columbus, Ohio

1985—Present The Ohio State University,
Columbus, Ohio

i v

www.manaraa.com

P U B L I C A T I O N S

"Computer Based Records as an Aid to Power Plant
Availability Improvement"* (Co-author, Don Anson and Larry
Stember), Presented at the Joint Power Generation
Conference, September 22, 1983.

"A High Level Simulation Model of a Networked Computer
System", Proceed i nos of the 1980 Ni nter Simu 1 at i on
Conference, (Co-author Lawrence L. Rose), IEEE Long Beach,
California, December 1980, pp. 275-289.

FIELDS OF STUDY

The design, implementation and application of practical
software environments which can be applied to realistic
software engineering problems.

Additional interests include software engineering methods
used to support software design, analysis, and construction
in addition to the management of the software development
process.

In addition to software engineering, operating systems,
programming languages, databases and simulation are fields
of study.

v

www.manaraa.com

TABLE OF CONTENTS

ACKNOWLEDGEMENTS i i

V I T A ...iv

TABLE OF C O N T E N T S .. vi

LIST OF TABLES... vi i i

LIST OF F I G U R E S ..ix

CHAPTER PAGE

I. I n t r o d u c t i o n ... 11
1.1 Software Engineering Methods in

The Software Life C y c l e 11
1.2 The Need For A Model To Represent

Software Engineering Methods 15
1.3 The TRIAD m o d e l19
1.A Advantages of the TRIAD model

Over Existing Method Support 33
1.5 Contributions 38
1.6 Organization of the Dissertation 39

II. The Need for Software Engineering Methods A1
2.1 Software Engineering Methods A3
2.2 Methods in the Software Life C y c l e 5A
2.3 Computer Based Support for Software

Engineering Methods 59
2.A Environments To Support Software

Engineering Methods 68
2.5 Environments to Support Multiple Software

Engineering Methods 93
2.6 Requirements for Software Engineering Methods . 75

III. TRIAD Model Definition 81
3.1 The TRIAD M o d e l 81
3.2 TRIAD Model Operators 106
3.3 Tuning a M e t h o d 135
3.A TRIAD Procedures 138

v i

www.manaraa.com

3.5 User View of the TRIAD M o d e l 1A0
3.6 Using The TRIAD Model to Represent A Method . 1A2

IV. Alternative Models 1A6
A.l Grammar F o r m 1A7
A.2 Database M o d e l s 165
A.3 Knowledge Representation F r a m e s 169

V. Support Features of the TRIAD Model for
Software Engineering Methods 171
5.1 Required Method Structure Support Features . 173
5.2 Required Implementation Features 181
5.3 Multiple Software Engineering Methods Support 185

VI. Implementation of the TRIAD M o d e l 190
6.1 Implementation Vehicles 192
6.2 System Organization 193
6.3 Tuner Support F e a t u r e s 19A
6.A Hardware Features 195
6.5 V i s i b i l i t y 198
6.6 Graphics Support 200
6.7 Storage and Retrieval of TRIAD Model Entities 201
6.8 TRIAD Model Query Language 202
6.9 Tool I n t e r f a c e 803
6.10 TRIAD Procedures 805
6.11 User I n t e r f a c e 808

VII. Demonstration of TRIAD Model 210
7.1 Jackson M e t h o d 210
7.2 The TRIAD M e t h o d815

VIII. TRIAD Model Evaluation 838
8.1 Research Contributions 836
8.2 Future Enhancements 237

LIST OF REFERENCES..8A0 (

v i i

www.manaraa.com

LIST OF TABLES

TABLES PAGE

I. Composite Objects (Units) In
The Call Structure Example..................................24

S. Generalization of the Call Structure Method
Composite Objects...29

3. Software Engineering Methods
by Software Life Cycle Phase............................... 57

A. Formal Definition of the TRIAD Model
Method Definition Component.................................89

5. Formal Definition of the TRIAD Model
Method Use Component..'102

6. TRIAD Model Constraints.................. 104

7. Method Definition Operators.............................. 107

8. Method Use Operators.......................................110

9. Formal Definition of the
TRIAD Method Definition Operators........................ 113

10. Formal Definition of the Method Use Operators. . . 122

II. Comparison of TRIAD and Grammar Form Models. . . . 152

12. Comparison of Method Definition Operators.......... 158

13. Comparison of Method Use Operators.................. 162

14. TRIAD method Unit Classes................................. 217

vi i i

www.manaraa.com

LIST OF FIGURES

FIGURES PAGE

I. Jackson Method Structure for the Method U s e 51

5. Module Call Structure Example........................... 55

3. Jackson Method Structure for the Method Definition. . 58

A. SADT diagram of the Name and Address File System. . . AA

5. Dataflow Diagram of the Name
and Address File System...................................A 7

6. Name and Address System Call Structure................ A8

7. Jackson Method Representation of the
Name and Address System...................................50

8. Flowchart of the Name and Address File System........55

9. Method Definition Component of the TRIAD Model. . . . 83

10. TRIAD Model... 93

II. User View of the TRIAD Model.............................1A1

15. Module unit... 1AA

13. Instantiated TRIAD Model Units...........................1A5

1A. Grammar Form Model... 1A9

15. Multiple Software Engineering Methods.................. 189

16. TRIAD Screen Layout.. 198

17. Example of Information Propagation..................... 506

18. Sequence Unit Class for the Jackson Method............. 513

i x

www.manaraa.com

19. TRIAD Application of Jackson Method.................21L

20. TRIAD Multiple Method Unit Class Refinements. . . . 222

21. User Manual (USERMAN) Unit Class.................... 225

22. Completed User Manual (USERMAN) Unit............... 227

23. Partial List of Units from the TRIAD Method. . . . 230

2^. Structure of Units for the Tuner Major Component. . 231

x

www.manaraa.com

CHAPTER I

INTRODUCTION

This dissertation describes the structure! use and

implementation of the TRIAD model, which is a model for the

representation and automation of software engineering

methods (hereafter referred to simply as methods). The model

is designed not only to support the use of single methods,

but also to support the cooperative use of multiple methods.

In addition, the model is structured so that when a method

is described in the model’s terminology, computer based

support for the model can be readily provided.

1.1 SOFTWARE ENGINEERING METHODS IN

THE SOFTWARE LIFE CYCLE

The software life cycle model divides software

development into distinct phases— requirements analysis,

system design, program design, coding and maintenance

CBIGG801. The tasks accomplished in each phase transform a

software system from an idea to implemented code. Beginning

with an imprecise idea, each succeeding phase of the life

11

www.manaraa.com

12

cycle creates a less vague, more precise description of the

desired software. At the conclusion of each phase, a

document is produced describing the accomplishments of the

phase. On the basis of this document, a decision is made on

whether to proceed with the development or cancel it. If in

the later phases, errors are discovered in work done in the

previous phases, the previous phase is re-entered and the

errors corrected. The life cycle then becomes iterative.

Many iterations may be made through the life cycle before

the software implementation is completed and the software

distributed fcr use.

To facilitate software development, many methods have

been created which help the software engineer to accomplish

the tasks in a particular phase and to manage the overall

software development process CDAVIS3,FREE773. In general,

methods have two goals. The first goal is to support the

building of the software product, while the second is to

support the management of the software engineering process.

Methods have three components. The first component is

a way of describing the desired software in some particular

representation. The second component is a way of describing

the meaning of this software representation and the third is

a systematic procedure for creating the representation of

the software. Methods usually focus on a specific software

www.manaraa.com

13

life cycle phase or on individual tasks within a phase, such

as requirements collection or program design. Each method

develops a specific representation which is best for

representing the software during the phase being applied.

This representation is often not the same as (or even close

to) the intended final result— the source code.

The methods are usually consistently applied in the

initial iteration of the phase; however, if the phase is

re-entered, especially for minor corrections, the natural

tendency is not to re-apply the method and update the

representation in the earlier phase, but just to make the

correction in the phase in which it was discovered. Part of

this problem is discipline, but the other part is the amount

of effort required to maintain the method of a preceding

phase during iterations of the life cycle. In addition, the

primary focus of the staff is to complete the current phase,

not adjust the previous one. This tendency destroys the

historical value of the method as a documentation of the

software engineering process.

Since the methods are phase specific, different methods

are employed in different phases. The transition between

phases becomes difficult if the representation for the

software is not consistent. One phase may be largely

textual, while the next may be graphical and the following

www.manaraa.com

14

hierarchical. In addition, some methods do not even have

computer based support.

For those software engineering methods having computer

based support for the method application, the support is

specific for a particular method such as IDEF for SADT

CS0FT811 and PSL/PSA CTEIC771. Although the use of the

method is still beneficial, the expected benefit of storing

the method in a computer based support tool is not realized

unless the tool has a common representation. Thus, the

problem of phase to phase transition is exacerbated by the

computer based support rather than lessened.

To support software engineering methods effectively

within the software life cycle, a model is needed for

representing software engineering methods and providing

features to support the method use. This model must be

capable of capturing the representation properties of the

method as well as the procedural properties. To represent

most software engineering methods, the model must be capable

of handling many types of data— in particular, large blocks

of unstructured text which are characteristic of the early

life cycle phases and of software documentation. In the

later phases, the model must be capable of representing

methods such as Dataflow Diagrams and program structure

charts, which are graphical in nature. The procedural

www.manaraa.com

15

properties of a software engineering method describe how tne

method is used with or applied to the representational

features of the model. Computer based support provides the

capability of going beyond merely recording the application

of the method to actually assisting the software engineers

by reminding them of method constraints and by doing

elementary reasoning which may, for example, suggest when

design alternatives are possible CWHIL85,Y0UR863.

1.2 THE NEED FOR A MODEL TO REPRESENT

SOFTWARE ENGINEERING METHODS

Conclusive proof of the value of applying software

engineering methods to large projects is inherently

difficult to obtain. Experimentation, the obvious approach

for proving the value of a method, is too costly to

undertake. This is true because experimentation would

require developing the project twice— once using a method

and then a second time without using one. Another problem

with experimentation is an experiment requires the

availability of software engineers of demonstrably

comparable skill for the parallel developments. So, at

present, the only certain thing is that the use of a method

is beneficial mainly because the method provides an ordered,

www.manaraa.com

16

reproducible approach to software development. Bergland

comments on the motivation for method use as follows* "...

software development is so inefficient that almost anything

can improve it" CBERG791.

Computer support for software engineering methods can

improve the application of most methods. Because of the

tremendous processing capabilities of computer systems* the

storing, retrieval and processing of the information used by

the method can be facilitated. In addition, the computer,

which is already needed for code development, can serve as a

central information repository for the entire project

development. Advanced workstations provide facilities, such

as bit mapped displays, multiple windows and keyboard

customizations, for all aspects of software development

including document production CY0UR86D. A general model

with computer based support for representing software

engineering methods enhances the use of those methods that

do not have existing computer based support and may increase

the power of those with computer based support.

In general, methods fall into one of two broad

categories; either phase dependent or phase independent

CRAMA863. Phase dependent methods are aimed at supporting

the engineer accomplishing the tasks in a particular phase.

For example, Jackson Method is aimed at the program design

www.manaraa.com

17

phase of the software life cycle. Phase independent methods

are applicable to the process of managing the whole software

development process including all of the phases of the

software life cycle. Management methods include cost

estimation* scheduling and version control. Methods

applicable to software in general include traceability (of

requirements)* metrics and re-usability.

When several software engineering methods are used to

develop software* there is a tendency to only actively use

the methods while the work is progressing in the phase to

which the method is applicable. This tendency causes the

value of the method to be lost when changes occur in the

software due to errors or new requirements. Thus, the

ability to share representations of the software between

phases and methods helps the software engineers make changes

to the software by easily shifting between phases and

methods during the iterations of the software life cycle.

The problem this dissertation addresses is the need for

a model for uniformly representing software engineering

methods. This model must be capable of capturing the

structure of the method, the meaning of the structure, and

the rules and procedures governing the use of the method.

Since many methods use either hierarchical or graphical

structures to represent software and the development

www.manaraa.com

IB

proctaSj the model must be able to represent both structural

types. The meaning of the structure refers to the implied

knowledge inherent in the way the method structures

information. For example, SADT makes use of arrows and

boxes to represent software. The boxes represent processes

or actions while the arrows mean different things depending

on their position. Arrows into the left side of a box are

input, while arrows from the right side of a box represent

outputs. So the model must not only represent arrows, but

allow the expression of what the arrows mean in the context

of the method. Finally, methods usually have a procedure or

a set of rules for the application of the method. To

support methods effectively, the model must allow this

procedure to be expressed in a form that will aid the user

in applying the method according to the rules or procedure.

Not only is a language for expressing the rules or procedure

necessary, but these procedures or rules must be associated

with the proper elements of the method. Using the SADT

example again, each arrow has different constraints based on

its location on the box. For example, an output arrow,

which originates from the right side of a box, can not be

attached to the right side of another be > . The ability to

associate rules and procedures with the method structure is

essential to capture the steps necessary to correctly apply

www.manaraa.com

19

a method.

A further requirement for the model is that software

engineers find it easy to use both to define and to use

existing methods as well as new ones. Finally, the model

must allow easy computer implementation in order to support

those methods which currently lack such support as well as

expand the support for those methods which now have

independent or tool based support.

1.3 THE TRIAD MODEL

The TRIAD model is a new model synthesized from

research on attribute grammars, databases and knowledge

representation systems CT3IC82,DATE77,MINS75,KNUT683. The

TRIAD model provides a framework for capturing the

representation of software prescribed by a particular method

and for supplying procedures for processing the

representation. The processing is provided by specially

coded procedures which are associated with the method

structure and interfaces to existing tools.

A Jackson Structure diagram can be used to identify and

show the hierarchy of elements in the TRIAD model. Figure 1

shows the TRIAD model elements which express the use of a

software engineering method. The figure uses a slightly

www.manaraa.com

EO

expanded Jackson diagram with a plus (+) used to represent 1

or more instances of an item. The asterisk (*) remains the

symbol for zero or more iterations. The 0/1 notation in the

bottom right corner of the Refinement Linkages box indicates

that the element may have at most one occurrence.

www.manaraa.com

ai

Secondary
Links

T argetNameName Value

System

Component

Uni t

Entry

Refinement
Links

0/1

Secondary
Link

Attribute

At tr ibutes

Figure 1. Jackson Method Structure for the Method Use

www.manaraa.com

22

Typical software engineering methods use symbols to

represent aggregates of composite objects. These symbols

are often boxes such as those used in Jacksorn SADT and Call

Structure diagrams, or circles such as in Dataflow diagrams.

In the TRIAD model such composite objects are captured by

the generic notion of Units. Figure 2 shows a simple call

structure diagram where each module is represented by a box

and the arrows between the boxes represent the source and

target of a module invocation. The names of the modules are

placed within the box.

Figure 2. Module Call Structure Example

www.manaraa.com

23

In the TRIAD model, each module is a Unit. The above

example represents the structure of a program in terms of

module names. The Call Structure method may expand the

module description by associating the author’s name, date

changed, source code and major data structures with each

module name. These objects, i.e. the author’s name, date,

etc., form the composite objects of the method. Components

represent these objects or Units in the TRIAD model. Table

1 shows the composite objects contained in the Call

Structure example.

www.manaraa.com

2^

Table 1. Composite Objects (Units) In

The Call Structure Example

Module Name: A
Author: Bob
Date Changed: 09/12/8^
Source Code (1ines_of_code: 5):

PROCEDURE A;
BEGIN

B;
C;

END.

Module Name: B
Author: Sarah
Date Changed: 05/03/85
Major Data Structure (referenced by C): Z
Source Code (1ines_of_code: 6^):

PROCEDURE B;
TYPE Z ____
BEGIN

e n d ;

Module Name: C
Author: Beth
Date Changed: 09/12/86
Source Code (1ines_of_code: 128):

PROCEDURE C;
BEGIN

END;

www.manaraa.com

25

In some methods these Components actually consist of an

arbitrarily long sequence of the same object. For example,

a module may undergo many changes; therefore, to maintain a

history of all of the changes, a list of all of the dates

the module was changed is necessary. In the TRIAD Model

each occurrence of a Component in the sequence is known as

an Entry, thus each date a module is changed is an Entry in

the "Date Changed" Component.

Entries in turn have various Attributes which describe

and summarize the Entry. In the Call Structure method

example, the Component containing the source code may have

an Attribute called 1ines_of_code which contains the number

of source statements contained in the module.

Typical software engineering methods, in addition to

using symbols to represent the composite objects in the

method, also use symbols to structure these objects. Arrows

between modules are used in the Call Structure method to

show which modules are called by each module. The TRIAD

model calls such arrows Refinement Linkages.

Some methods attempt to represent additional

relationships between the objects. For example, the Call

Structure method may use the data structure definitions for

each module to show the common external data elements of the

program. In this case, a dashed arrow in the Call Structure

www.manaraa.com

26

method would be used to connect each data structure with all

modules that reference it. Secondary Links are used in the

TRIAD model to show such relationships. The Secondary Links

would be from each Entry in a Component containing a data

structure to the Entry of the Unit containing the module

referencing the data structure.

Figure 1 shows the structure of the elements in the

TRIAD model. From this figure it can be easily seen that a

Unit is composed of one or more Components. Each Component)

in turn, contains one or more Entries. The Entry consists

of three elements— Attributes, Refinement Linkages and

Secondary Links. The Attributes of which there may be zero

or more, contain a name and a value. The Secondary Links

may consist of zero or more links also and each link

contains a Link Name and Target Entry.

By the use of Figure 2 this informal discussion has

shown how a simple method would be expressed using the TRIAD

model. Additional features of the TRIAD model permit the

generalization of this specific method example to a set of

elements capable of representing any program using the Call

Structure method. Figure 3 shows the TRIAD Model Method

Definition structure which is the generalization of

F igure 1.

www.manaraa.com

*

27

The Units are generalized to Unit Classes. For example

the Unit Class for the Call Structure method is a single one

representing a module. Within each Unit, the Components and

Entries are generalized to Component Categories within a

Unit Class. The author, source code and date changed are

examples of Component Categories from the Call Structure

method example. The Refinement Linkages are the same except

that the source and target are now Component Categories and

Unit Classes respectively rather than the specific

Components and Units of the method example. The Attributes

attached to the Entries are generalized to Attribute Names.

The Attribute Names include a type definition and the names

are associated with a Component Category. Thus, in the Call

Structure method example, the 1ines_of_code Attribute is

named 1ines_of_code, its Type Definition is an integer and

it is associated with the source code Component Category.

Finally, the Secondary Links are generalized in the same

manner as the Refinement Linkages, in that the Secondary

Links are named and the source and target Component

Categories are named.

www.manaraa.com

28

CoDomTypeName Name Name Rule

Method

Uni t
Class

Secondary
Links

Procedure
References

At tr ibutes

Component
Category

Ref inement
L i nkages

0/1

Figure 3. Jackson Method Structure for the Method Definition

www.manaraa.com

29

Figure 1 shows the generalization of the TRIAD model

Method Use Component (shown in Figure 3) to a TRIAD model

Method Definition Component. The two figures are very

similar. The major difference is the Components and Entries

in Figure 3 are generalized as Component Categories in

Figure 1 Each Component Category is shown as possessing

zero or more Attributes, Secondary Linkages and Procedure

References. In addition the Component Category may also

contain a Refinement Linkage. Each Attribute has a name and

a type. A name and a codomain for each Secondary Linkage is

also present. Finally each Procedure Reference has a name

and an invocation rule.

Table 1 shown earlier depicted the composite objects

contained in the Call Structure method example. Table 2

shows the same objects after performing the generalization

described above.

Table 2. Generalization of the Call Structure Method

Composite Objects

Module Name:
Author:
Date Changed:
Major Data Structure

(link: common_ds;
source: Major Data Structure; target: Module):

www.manaraa.com

Table 2 (continued)

Source Code (1ines_of_code: integer):

30

The preceding discussion of the TRIAD model has shown

how the method’s structure can be represented. In addition

to the structure, most methods have rules and procedures for

putting software into the method’s structure. The TRIAD

model supports this aspect of methods by allowing procedures

to be written and associated with the Component Categories

(composite objects of the method). For example, in the call

structure example a rule is that each module name must be

unique. A small procedure checks each module name as the

software engineer creates a Unit for each module against the

existing names and ensures that a name is not re-used.

So far only single method support has been discussed,

however, software development entails many activities, most

of which are supported by different methods. Each method

can be expressed separately using the TRIAD model, but the

maximum benefit of the iterative nature of the software life

cycle is obtained when the different methods are linked

together using the TRIAD model.

Returning to the Call Structure method example, this

transition to a multiple software engineering method is

illustrated when the program design is complete and coding

begins, the call structure method can be expanded by adding

www.manaraa.com

31

Component Categories to support coding such as references to

syntax directed editors or Component Categories containing

pseudo code.

At the conclusion of the design phase, another

different method could be applied for coding support. For

this method, the software engineer has several choices. The

first choice is to expand the existing call structure method

to support the coding process. This expansion can be done

by adding Component Categories to the existing Unit Class.

In addition, entirely new Unit Classes may be added to

support unique aspects of the coding method, which are not

already captured in the call structure method.

Another choice is to apply a different method for

coding support. Since both methods are defined using the

TRIAD model, it is possible to automatically propagate, or

in this case, copy the information from the call structure

method to the coding method. An alternate approach is to

create Secondary Links between Unit Classes in the call

structure and coding methods which represent the same

module. The ease of transition between methods is possible

because a common representation for the methods is used and

because the Unit Classes are designed to support the sharing

of information between methods.

www.manaraa.com

3a

In addition to the structural representation of the

method provided by the TRIAD model, the procedural aspects

of applying a method are enhanced by using the model. The

definition of the method using the TRIAD model assists the

software engineer applying the method by providing a

standard representation of the method which when supported

by a computer is capable of providing computer based support

for the method. Coding of method specific procedures by the

method definer to monitor and interpret the method users’

actions, provides guidance in applying the method. These

procedures can enforce method rules, such as limiting the

number of modules called by any other module. In addition,

information can be propagated automatically by these

procedures. In a management method the completion of the

coding of a module may cause quality assurance to be

notified, a new test version of the software to be created,

and a message sent to the manager that the module is

completed which causes a new task for the programmer to be

scheduled. All of this is done without any explicit action

on the part of the programmer other than indicating that the

code is completed.

www.manaraa.com

33

l.<t ADVANTAGES OF THE TRIAD MODEL

OVER EXISTING METHOD SUPPORT

The TRIAD model achieves its comprehensive approach to

software engineering method support over the entire software

life cycle by focusing on the support of existing methods.

The alternative approach is to try to create yet another new

method which is applicable to all phases of the life cycle.

Support of existing methods is important because the

existing methods are widely used and represent a large

investment of resources for development of support systems

and for training personnel in their use.. Thus, uniform

computer support is extended to methods in which the current

computer professionals are already skilled.

Other attempts at comprehensive method support have

used database management systems and attribute grammars to

store project data. Database systems do not cope well with

unstructured text which is a major component of most

methods. Admittedly this is an implementation restriction,

but it becomes an issue when computer based method support

is provided using off the shelf software. In addition, the

underlying data model may not be suitable for the definition

of a schema to represent a method. For instance, a

relational model can represent a graphical method, but not

www.manaraa.com

3A

as precisely or as directly as the network model, which uses

a graph to represent the method structure. The issue is how

closely does the model reflect the method structure so that

the user can easily conceptualize the method once it is

expressed using the model.

Attribute grammars were used as the underlying model in

earlier versions of TRIAD CMCKNS5D. They proved effective,

but were difficult to use for those other than computer

scientists who are skilled in programming languages.

Describing the relationships of the various entities in a

typical method requires a great many detailed definitions in

the grammar approach. This detail also extends to the

Component Categories contained within the Unit Classes.

This level of detail is unnecessary because the most

important relationship involving Component Categories is

that of membership in a Unit Class. For example, in the

call structure method, the Unit Class contained several

Component Categories (author, date changed, data structure

and source code). These Component Category are positioned

serially within the Unit Class in the order they were

created. In a grammar model, these four Component

Categories can be structured in the same manner by the

production

www.manaraa.com

35

A -> B C D E

Categories. An alternate structure for these Component

Categories is given by the following productions:

A -> B F

F -> C D E

the grammar model has the expressive power of additional

structure for the Component Categories) but the software

engineering methods do not require the structure.

The specification of the TRIAD model was driven by two

goals. The first goal was to represent existing methods

used in all phases of the software life cycle. The second

goal was to provide a model consistent with existing

methods* such that the software engineer could easily define

a method using the model. Each of the major models

(attribute grammars* database systems and knowledge

representation systems) from which the TRIAD model was

synthesized are not capable of satisfying both of these

goals completely. Grammars were capable of the

representation, but were difficult to manipulate. Knowledge

frames were easier to manipulate* but operated at too

specialized a level for software engineering methods.

Databases compromised on both goals. The representation was

not complete* and for some data models it was difficult to

manipulate. By selecting and combining the best aspects of

www.manaraa.com

36

all three* a better model was derived.

A key feature of the TRIAD model is the facility for

allowing the incorporation of procedures to manipulate and

process the representation. This feature will allow method

application to become easier by anticipating the software

engineer’s needs based on the experience of previous users

of the method. Without this feature to represent the

experience gained in using the method* the relevance of the

method is not enhanced or easily customized.

The TRIAD model is consistent with software engineering

methods because it supports graphical connections and text

storage. The majority of the methods rely on graphical

models; especially to represent the software code. The

inclusion of a graphics interface allows a symbolic

manipulation of the model (entries and categories), thus

providing the software engineer with an even more consistent

representation of the method.

The implementation of the TRIAD model demonstrated that

the model was easily automated. It also made it easier to

validate the model by supporting rapid and accurate

application of the model to a number of example methods. In

addition, the implementation process and the use of the

implementation suggested improvements in the model. One of

the results was the creation of special features to support

www.manaraa.com

37

classes of methods. Most of these special features are

unique Attributes and Procedures which control the

presentation and use of the Component Categories within the

Unit Classes.

The best demonstration of the value of the TRIAD model

was its use to describe a multiple method environment. This

exercise went beyond just specifying the several methods;

the multiple method was actually used to apply the software

engineering methods to the creation of a new version of the

TRIAD model implementation. As with the other uses of the

implementation, significant insight was gained into the use

of the model and into the improvement of the TRIAD model

implementation.

The TRIAD model, because of its capability for

representing methods, can be used in an evolutionary way.

If a software project has already begun or has ever

progressed as far as the maintenance phase, it is still

possible to apply a method without expending excessive

effort to reformat the previously acquired information.

This capability was demonstrated by applying the TRIAD

multiple method environment to the TRIAD model

implementation after the development of the TRIAD

environment generator had already begun. If references to

software source code can be easily isolated from existing

www.manaraa.com

38

sources, say compiler control statements or even the source

language statements, then instances of the method Units

which represent modules can be created automatically. By

automatically creating the Units, the method is applied even

though it may be in a superficial way. In the future, as

the code changes, the appropriate Units can be filled in.

Over a period of time many of the modules would be

completely expressed in the method using this technique of

applying the method fully only to those elements of the

software which are being reworked. Although the effect of

this approach may be only local to the modules being

actively worked on, it is still a way to incrementally apply

a method without undue startup overhead.

1.5 CONTRIBUTIONS

This research contributions of this dissertation are:

o Specification of a single model for representing

multiple software engineering methods in a software life

cycle development process,

o Implementation of the TRIAD model for proof of concept

demonstrat ion,

o Evaluation of the model and its implementation for

multiple software engineering methods support and

www.manaraa.com

39

o Refinement of the TRIAD model through the creation of a

software engineering method consisting of multiple

methods to support the development of a large software

pro ject.

1.6 ORGANIZATION OF THE DISSERTATION

The dissertation proceeds from an examination of

existing software engineering methods, of their current

computer support base and of their shared features which

must be integrated if they are to be used in a cooperative

way within the software life cycle to a proposed model for

representing software engineering methods. Current research

is surveyed to isolate important features for the

construction of a suitable model for software engineering

methods. The TRIAD model is implemented and demonstrated

using a multiple software engineering method derived from

the process of implementing the TRIAD model. An examination

of the results of the research concludes the dissertation.

Chapter II explores the general nature of software

engineering methods by describing several popular methods.

The state of computer based support for these existing

methods is also discussed. From the survey of these

www.manaraa.com

40

methods> the requirements necessary for computer based

support within the context of the software life cycle is

presented.

The TRIAD model is defined in Chapter III. The

features of the model as applied to software engineering

methods support are described in Chapter 10. Multiple

method support features of the TRIAD model are also

described in Chapter IV. Chapter V examines alternative

models and establishes why they are not as effective as the

TRIAD model for representing software engineering methods.

In Chapter VI the implementation of the TRIAD model for

the TRIAD environment generator is described. Use of the

TRIAD model features for software engineering methods is

illustrated by citing examples from the implementation.

A sample multiple method software engineering

environment generated by TRIAD is described in Chapter VII.

Chapter VIII concludes the dissertation by evaluating the

TRIAD model and its implementation.

www.manaraa.com

CHAPTER II

THE NEED FOR SOFTWARE ENGINEERING METHODS

As the cost and complexity of software development has

increased over the years, software engineers have been

searching for ways to manage the construction of software

such that a quality product can be built within schedule and

budgec constraints and which satisfies the user. Software

written twenty years ago consisted of small programs which

ran on small expensive computers. The cost of the hardware

far exceeded the software development cost. However, now

the reverse is true. The cost of hardware has plunged while

its capacity has greatly increased. Further, more complex

problems are now being attacked because the computers are

more powerful. Software engineer’s salaries have increased

not only because of the inflation of the past decade, but

also because of the still chronic shortage of good software

engineers. High labor costs and bigger more complex

software have been the major contributors to the now higher

development costs for software CB0EH8A, YQUR86I.

To effectively manage these growing costs and produce a

quality product, software engineers turned to methods to

organize, assist and simplify the software development

<♦1

www.manaraa.com

process. Methods were intended to do the following:

o Provide an ordered way of accomplishing a software

engineering task, thereby* moving software development

from an art to a science*

o Organize the information produced from the software

engineering task for easier processing and retrieval*

o Describe the software engineering problem and solution

completely, succinctly and unambiguously,

o Suggest solutions to the software engineering problem.

This aspect of a method takes advantage of previous

experience when a new problem is recognized as similar

to an older, already solved one,

o Produce good solutions,

o Produce solutions faster than not using a method and

o Provide a basis for managing the software engineering

problem solving process. By using an ordered approach,

progress can can be quantitatively measured and the

process properly managed to insure reliable software is

produced on time and within budget.

www.manaraa.com

43

2.1 SOFTWARE ENGINEERING METHODS

Over the past decade numerous software engineering

methods have been proposed to assist the software engineer

in building quality software. Several of the more popular

methods have been analyzed to obtain the requirements to

provide computer based support for these methods. Five

methods will be briefly described (SADT, Data Flow Diagrams)

Call Structure Charts, Jackson Method and Flowcharts). A

single example will be used to illustrate the salient

features of all five methods.

A simple data processing application is used to

illustrate the software engineering methods. The example

software is a name and address file with the following

requirements:

1. Edit new name and address transactions,

2. Update the name and address file and

3. Produce reports and mailing labels.

Figure 4 shows how the high level processing of this

example is expressed using the Structured Analysis and

Design Technique (SADT) CR0SS77bl.

www.manaraa.com

Transactions

Names &
Address Valid Transactions

Ru es File

File R eport^Generate
Reports

Update
File

Edit
Transactions

Report Formats

Figure A. SADT diagram of the Name and Address File System

www.manaraa.com

<♦5

Each box in SADT terminology represents a bounded

context. In this example, the bounded context is a

processing action. Arrows into the box from the side are

input, which in this example, the input is names and

addresses. Arrows out of the boxes are output. Arrows into

the box from the top are controls, which are transaction

types in this example. Mechanisms are represented by arrows

into the box from the bottom. In this example, rules for

editing and the file of names and addresses are mechanisms

used to edit transactions. Each box and arrow is named with

a descriptive label. The purpose of SADT is to communicate

ideas which in this case is a software design. No more than

6 boxes are permitted on a single SADT drawing. If more

than 6 boxes are needed, than the drawing must be

hierarchically organized. Each box in a drawing may be

expanded by creating a new drawing containing more detail.

Returning to the example, the second box, Update File, could

be expanded and all of the processing actions for each

transaction described on another SADT diagram.

Figure 5 is the name and address example defined using

the dataflow technique CDEMA79D. Dataflow Diagrams

represent software by showing the flow of data through

processing actions. Bubbles (circles) are used to represent

a processing action and arcs between bubbles represent the

flow of data. Rectangles are used to represent sources and

destinations of data. A data store is represented by the

www.manaraa.com

oppn ended rectangles. Labels are placed in the bubbles and

rectangles and on the arcs to describe them.

www.manaraa.com

47

Name and
Address
File

Update

Print
Reports

T ransact-. Classify
ions W Validate

Reports
and Lists

Error
Display

User

Figure 5. Dataflow Diagram of the Name

and Address File System

www.manaraa.com

<♦8

Referring to Figure 5* transactions flow into the

validate bubble and are separated into valid and invalid

ones. The invalid ones are displayed for correction, while

the valid ones are separated into file update requests.

Depending on the transaction type, file updates are made,

otherwise the requested reports or labels are printed.

The Call Structure method shown in Figure 6 shows the

organization of the example into program modules. The main

program calls three submodules, Edit, Update and Report.

Each module is represented by a box. Arrows between the

boxes represent the calls relation between the modules.

Edit Repor tUpdate

Main Program

Figure 6. Name and Address System Call Structure

www.manaraa.com

49

The Jackson Method represents the name and address

system as shown in Figure 7 [JACK781. Data structures are

designed first in the Jackson Method and then used to define

the processing. The example system has a transaction and

data store as the primary data structures. Rectangles are

used to represent processing in the Jackson Method and lines

between the rectangles represent control paths. Within the

rectangles are labels to describe the processing. Three

different types of processing are represented in the Jackson

Method by slight modifications of the basic rectangle. If a

star <•*) is placed in the upper right corner of the

rectangle then iteration is represented. The processing

indicated within the box is repeated until a stated criteria

is met. Iteration includes the programming constructs of DO

and REPEAT. Selection (choice) is represented in Jackson

Method by a zero (0) in the upper right corner of the

rectangle. Each selection box represents one of several

choices. The IF statement in many programming languages is

used to implement the selection construct. Finally a box

with no special symbol in the upper right corner is a

processing action that is performed in sequence. The

sequence of operations is determined by reading the diagram

top down and from left to right.

www.manaraa.com

50

Invalid

Print ReportsUpdate File

Main Process
Transact ion

Figure 7. Jackson Method Representation of the

Name and Address System

www.manaraa.com

51

In Figure 7, selection is used to separate the valid

from the invalid transactions at the first level and again

at the second to separate the file update transactions from

the report transactions.

The final method presented is the Flowchart. Figure 8

shows the name and address file system main processing loop.

Flowcharts use distinct geometric symbols to represent

processing options and storage entities. The symbols are

connected by arrows which represent the flow of control

through the symbols. The box represent general processing.

Diamonds are decisions and cylinders represent storage

entities. Contained within the symbols are descriptions and

names for the actions represented by the symbol. For

example, in Figure 8, the decision diamond contains the test

conditions.

In the initial description of the name and address

example, the most common software engineering method was

used, namely natural language narrative. The requirements of

the system were specified as a simple list.

www.manaraa.com

5a

Start

Read Trans.

Validate Transaction

Name and
Address
File

Display
Error

No
Valid

Yes

Produce Rpts
and Lists

No
Update

Yes

Update File

Figure 8. Flowchart of the Name and Address File System

www.manaraa.com

53

From this brief overview of several popular methods*

the following common properties concerning the

representation of methods emerge:

o Methods may be entirely textual*

o Methods may combine text and symbols and

o Methods may use graphs to represent the structure of

sof tware.

Software Engineering methods are used more as a

representation of a solution than an actual problem solving

procedure. For example, Dataflow diagrams CDEMA793 and Call

Structure Charts CDAVI83D represent the flow of data through

a system or the Call Structure of a program, respectively.

As a representation of the program, they are effective in

providing an exact description of the problem. Ross makes

the point about SADT CR0SS851, that the SADT diagrams serve

as a documentation of the software for review and agreement

by the project participants.

In addition to representing the form of the software,

methods also serve to describe it. Data flow diagrams name

the source, destination and the path for data elements.

They also allow descriptive information about the processing

to be recorded within the bubbles.

Other information about the model is also recorded in

some methods, such as creation date, revision name,

designer, etc. This data is important to manage the use of

the method and describe the process of applying the method.

www.manaraa.com

5<t

Finally, some methods go beyond representing the

program and actually assist the software engineer by

suggesting solutions or designs. Jackson Method CJACK781,

when properly applied, produces a design, rather than just

recording the representation of a design.

2.2 METHODS IN THE SOFTWARE LIFE CYCLE

The development of software is generally viewed as an

iterative process consisting of several phases. Although

many software life cycles have been proposed consisting of

differing numbers of phases, the key idea is to partition

the software development process into distinct phases

CBIGG80H . These phases have a distinct beginning and ending

and produce a document or product whose quality can be

evaluated and used as a basis to make a decision on

continuing the software development. A general definition

of the software life cycle consists of the following five

phases:

o Requirements Analysis - Software development is

initiated by specifying the requirements the proposed

software is to satisfy,

o System Design — An overall design of the software is

created to meet the requirements defined previously,

o Program Design - The system design is further decomposed

www.manaraa.com

55

into programs where the processing detail is specified;

o Coding and Testing - The program design is translated

into a computer language and the resulting code is

tested.

o Maintenance - Errors in the design and coding are

corrected.

The software life cycle is a convenient vehicle for

classifying methods. The first methods created were those to

support the coding and testing phase. This was probably

because the coding process was the best understood phase and

also the easiest to support by computer tools since the

program source is stored in machine readable form. Example

methods for program coding include Flowcharting CDAVIB33,

Structured Programming CDAHL7S3 , Pseudocode CDAVIB33 and

indentation techniques. The program design phase is

supported by methods including Jackson Design Method,

Logical Construction of Programs CDAVI833, and Modular

Design (both top-down and bottom-up). Methods such as SADT

CR0SS77a,R0SS77b3, Logical Construction of Systems, PSL/PSA

CTEIC773, Data Flow Diagrams CDEMA793, Gane and Sarrenson

Charts CDAVI833 and HIPO CDAVI833 were created to support

the system design phase. The maintenance phase may use all

of the above software engineering methods since it is during

this phase that errors in design and coding are corrected.

The requirements analysis phase is supported by SADT and

SREM CALF0853. Table 3 summarizes the many methods by

www.manaraa.com

56

software life cycle phase.

www.manaraa.com

Table 3. Software Engineering Methods

by Software Life Cycle Phase

Requirements Analysis

- Requirements Statement

- Software Requirements Engineering Method <SREM)

Structured Analysis and Design Technique (SADT)

System Design

- Problem Statement Language/Problem Statement

Analyzer (PSL/PSA)

- Hierarchy plus Input/Processing/Output (HIPQ)

Structured Analysis and Design Technique (SADT)

Data Flow Diagrams (DFD)

Logical Design of Systems

Program Design

PDL

- Jackson Method

- Structured Design

- Logical Design of Programs

Coding and Testing

- Structured Programming

- Pseudo Code

Mai ntenance

www.manaraa.com

58

In addition to meeting the requirements for methods

stated in the previous section, these methods have several

common features:

o Limited Form - Most of the methods use either graphical

representation (Flowcharts, DFD and SADT) or a precise

language (SREM and PSL/PSA) to organize the information

in the method,

o Reflect the structure of the software — This is

particularly true for the system, program design and

coding phases,

o Most of the methods support the development of the

software - In addition the methods provide information

about the process of software development. Other

uniquely management oriented methods such as PERT, CPM

and Gantt charts support the process of software

development management directly,

o Most of the methods use a combination of textual and

graphical data.

o The methods can be supported either partially or totally

by computer based tools.

www.manaraa.com

59

E.3 COMPUTER BASED SUPPORT FOR SOFTWARE

ENGINEERING METHODS

Many methods have no computer based support, which

makes the application of the method different from the

majority of the work done in the software engineering

process, especially code development and testing. Since the

majority of the code development is done using a computer,

methods that can be used on a computer simplify the software

engineering process by providing a common access mechanism.

Further, computer based methods can take advantage of

already recorded information.

Several current trends indicate that computer support

for all methods is possible:

o Use of work stations (terminals or personal computers)

to do coding. The availability of ready computer access

encourages the use of computer based methods,

o Availability and use of word processing software and

high quality printers to do documentation and reports.

This characteristic obviously encourages the storage of

all project related data on the computer systems, making

the use of methods for the text based phases more

accessible,

o The availability of high resolution graphics on the work

stations encourages the support of methods which employ

www.manaraa.com

60

graphical representations for organizing the information

contained in the method and

o Sufficient on-line storage to store large amounts of

textual data. For a collection of methods applicable to

all phases of the software life cycle, there must be

adequate storage to store all of the information on-line

as well as accommodate indexes to properly organize the

inf ormat ion.

These factors are necessary to construct a practical

computer based support package for software engineering

methods. Without a workstation for ready access to a

computer with the above characteristics, computer support

for methods is not helpful to the software engineer. The

computer acts as a central focus for the entire project and

makes it easy and natural to use computer supported software

engineering methods.

Existing computer based support for software

engineering methods is of two distinct classes, isolated

tools and method specific software. Tools by definition are

general purpose, single use utilities such as pretty

printers, sorts and searching programs. The best example of

the tool approach is the Programmer’s Workbench on UNIX

CDQL078]. Sharing a common file system, this tool collection

works well for specific operations. Complex operations

require either parameters on the tool invocation, the

coupling of more than one tool together using the pipe or

www.manaraa.com

61

user interaction controlled by the tool. If the tools are

not designed to use a similar interface then tool use

becomes difficult.

Method specific software packages are just

that— specific to the imbedded software engineering method

and not capable of being used to represent and apply other

software engineering methods. For example, SADT is

supported by IDEF, which is an editor and storage facility

for SADT diagrams. Tools such as IDEF store the method

representation of the software in a unique internal format.

To access the method specific information available involves

writing new tools or coding an interface to translate the

information from the internal format to another standard

one. Further, some of these method specific tools do not

have an open architecture to allow the interfacing of

external tools. It would not be feasible to apply tools

such as IDEF which is specifically designed for SADT, on

other methods such as Jackson or dataflow.

Methods, such as PSL/PSA, use database management

systems to store and manipulate the information in the

method. For many methods, databases are unsuitable because

they are designed for fixed format, transaction based

processing. CKENT793 Even though a database may use a

graphical data model such as the hierarchical or network

model, it is often incapable of displaying the data

graphically. Since many software engineering methods are

www.manaraa.com

62

graphical representations, such as SADT, Dataflow Diagrams

and Call Structure charts, a graphical view is essential.

Syntax directed editors support a class of editing

methods. Editor generators, such as ALOE, allow the user to

specify the language syntax, for which the ALOE creates a

structure editor. Any text entered using a structure editor

is stored in the form of a parse tree. Action routines

provide a means for implementing constraints on the language

entry and do syntax checking. The problem with ALOE and

other syntax directed editors, is that their support is

primarily of one phase— coding. If a software engineering

method is not in the form of a language then the method

cannot be directly specified. Another drawback to structure

editors is that the person doing the editing must constantly

think of the text in terms of the parse tree imposed by the

language for which the editor is designed. For complicated

languages, complicated structures will result, making the

editing process more difficult. Further, the structure of

the text may not be as important as the content of the text.

Support for software engineering methods requires

computer based support beyond isolated tools or support

packages. The computer based method has to keep track of

the software engineer’s actions and be able to relate

different pieces of information together to assist the

software engineer.

www.manaraa.com

63

The following features are necessary for computer based

support of software engineering methods:

o Storage of information)

- Fixed format,

- Tex tua1,

- Graph ical,

o Represent the structure of the method,

o Capture the meaning of the method structure,

o Provide extended commands to do custom processing,

o Control access to stored information,

o Allow multiple user access and protection of

i nf ormat i o n ,

o Maintain versions of method applications and

o Interface to existing tools.

The initial benefit of applying a method is the

organization of the information into a structure that can be

analyzed and used as a basis for communication between

project members. To this end, computer based method support

must be flexible enough to support different types of

methods. Support must be provided for methods that are

largely collections of text for documentation, requirements

specification or module processing descriptions. Fixed

format data support is necessary for methods that collect

management data such as time and cost expenditures.

Finally, representation of graphical methods is required to

support the software engineering methods that represent

www.manaraa.com

6^

designs and project progress as graphs. For instance* system

structure* Dataflow Diagrams* Jackson, SADT and PERT charts

all use graphical representation.

The representation of software engineering methods

should be general enough to not only be re-usable for

different and new methods, but also to allow customization

and refinement of the method as experience is gained while

applying the method. For example* IDEF is a customized SADT

method applied to manufacturing problems. The

representation used by a computer based software engineering

method should closely resemble the model the method uses to

represent the software or the process of software

construction. This is important from a human engineering

standpoint. If the computer based support uses a graphical

representation, then the graphical methods can be easily

represented. Further, the software engineer applying the

method will not have to translate between the method

representation and the support representation for the

method.

Going beyond just representing the structure of the

method* the model should provide the means for capturing the

meaning of the structure. For example* Jackson Method

specifies three different types of processing boxes

(sequence* iteration and selection) which are distinguished

by symbols placed in the upper right hand corner of the box.

The method designer should be capable of differentiating

www.manaraa.com

65

between the structures and also the meaning of the

structures. Selection involves choosing only one of a

series of boxes which are subordinate to the predecessor box

while sequence performs the processing actions of each

subordinate box serially.

Extended commands facilitate the customization of

computer based support for methods. By allowing the

software engineer to implement extended commands, it is

possible to anticipate the processing needs of the person

applying the method. In addition, extended commands

implement processing which is peculiar to a particular

method the processing can be invoked by a single name.

In addition to the extended commands, the computer

based support must provide a query language to retrieve,

display and reformat the information organized by the

software engineering method and stored by the support

package. Queries can be either built on demand from

primitives or predefined and stored as extended commands.

The software engineer applying the method, invokes the

extended commands by specifying the command name.

Besides the organization of information describing

software, a method also contains the steps for successfully

using the method. Therefore, the support package should

include a means for writing instructions to guide the

software engineer applying the method. Guidance can take

the form of restricting access to information in parts of a

www.manaraa.com

66

method until preceding steps are properly concluded. For

example* the coding may not begin on a module until its

design is completed. The need for this feature varies from

method to method and the restrictions on access must be

specified when the software engineering method is defined.

Further guidance may require the method applier to

completely fill out all descriptions of the symbols before

defining another processing action.

The majority of software engineering methods are aimed

at large software projects* which have several software

engineers working together, thus, the support package must

allow multiple user access to the method and its

information. At the same time, to maintain the integrity

and privacy of the data, sufficient controls must be

enforced. This problem is identical to the access problem

in database management systems and is therefore solved by

making use of the solution for database management systems.

The construction and management of software is an

iterative process. Not only is it iterative, but often it

is necessary to backtrack and return to an earlier design,

plan or code implementation. To support this feature a

support package must allow different versions of a method

application to be maintained and easily retrieved for

exami nation.

www.manaraa.com

To avoid extensive recoding of tools for a method

application, a flexible interface to existing external tools

is necessary. This implies that the environment must have

an open architecture for its storage and retrieval

mechanism. It must also supply processing primitives for

accessing the storage facility and a convenient way for

invoking the external tools that are interfaced into the

env ironment.

The advantage of using a model that facilitates

computer based support for methods is the ability to

represent most methods— existing and new. In addition, the

common interface provided by the method support package

minimizes the amount of effort involved in applying a new

method. The alternative of providing method specific

computer support for each method, is to create a different

interface for each method used. This approach would

complicate rather than facilitate the use of multiple

methods on a project.

www.manaraa.com

68

E.<t ENVIRONMENTS TO SUPPORT SOFTWARE

ENGINEERING METHODS

An environment is more than just a synonym for the

computer and its operating system. An environment

encompasses everything affecting the users’ work. This

includes the lighting, temperature, furniture, hardware and

software characteristics. In this dissertation, environment

will mean the software, which includes the operating system,

the text editor, file system, utilities, tools, database

management system and any other software the software

engineer uses to accomplish his work.

The necessary elements for an environment for software

engineering method support are:

o An editor for manipulating text,

o A storage and retrieval mechanism for access to the

information collected during the application of a

method ,

o A model for representing the method which is flexible

enough to represent the structure embodied in many

different methods (hierarchy, network and directed

graphs) ,

o A consistent interface to all software engineering

methods to minimize the effort required to learn the use

of a new method,

www.manaraa.com

69

o A tool interface,

o Support for the enforcement of software engineering

method application and

o Support for project control and management activities.

Qf these elements, most are dependent on the host

computer system. Even the text editor should be or resemble

the one available on the system to minimize the amount of

training necessary for new users of the environment. The

storage and retrieval mechanism is not directly used by the

user except for the query language. Therefore, the most

important requirement for an environment to support methods

from the view point of this dissertation is the model used

to represent the method. It must be general enough to

represent most if not all methods and yet be capable of

being tailored to represent specific methods easily.

Since most methods are primarily used to represent

software, an appropriate model for methods must be capable

of representing software structures. The model must capture

the organization of the concepts in a way that is consistent

with the method. For example, if the method uses a network

to represent the Call Structure of a program, then the model

must support the representation of networks.

Environments to support methods differ from tools and

method specific support packages for methods primarily in

scope. The environment provides support for all aspects of

the method while a tool may provide support only for a

www.manaraa.com

70

single activity. Pretty printers are good examples of

tools. They reformat an existing collection of text.

However, they do not support the editing or entry of the

text, nor do they provide assistance in the interpretation

of the text. Method specific packages only support one

method.

It is important to differentiate the concept of

assisting the software engineer to create software from that

of automatic program generation. Assistance leaves the

creative decisions to the software engineer, but it tries to

make available to the software engineer all of the

information necessary to make the decisions. The assistance

provided to the software engineer must be centered around

the software engineer’s current activities or focus of

attention. In terms of computer based environments, the

focus of attention is the terminal screen. Thus, the

effective methods and environments that apply these methods,

must organize information on the screen so that the software

engineer can efficiently do the work of software

construction.

Assistance can still be intelligent and do rule-based

reasoning, but the ultimate decision is made by the software

engineer. The best application for intelligent assistance

is the summarization of pertinent information contained in

other places so that the summary information can impact the

ultimate decision. Intelligent assistance includes checking

www.manaraa.com

71

all of the rules for the application of a method to ensure

that the software engineer does not violate any. For

instance* SADT requires that any diagram can contain only 6

boxes. If the software engineer creates a seventh box then

the environment should inform the engineer of the rule

violation and suggest an alternative action.

To support many different methods, environments must

either have the software engineering method hard coded into

them or provide a feature for method specification. This is

analogous to the relationship between files and databases.

In databases the data model is used to create a

representation of the data relationships* which is a

separate process from actually entering, storing and

retrieving data.

The same is true with environments. First the method

(or methods) must be described in terms of the model. The

environment can then be used to apply the method to an

actual software design and implementation problem.

Beyond just representing the method, the environment

must assist the software engineer in applying the method.

This assistance can be done in several ways. The

representation and flexibility of the model to represent

many different types of methods is passive and limited to

the model chosen to represent methods. In this case,

assistance to the software engineer is provided merely by

the power of the model to represent the methods and support

www.manaraa.com

75

them on a computer. Active assistance is provided when the

environment can organize the method tasks for the software

engineer. This organization relates not only to the

information organized by the method, but also the placement

of additional information or references to it for easy

access. For example, links can be used by the environment

to associate related pieces of information that may not be

stored adjacently. Data flow diagrams are drawn at varying

levels of detail. Links between the general level and the

detailed level provide a fast means for an environment to

access the information stored at the two levels. Further

the available commands should be arranged such that the

software engineer can select the next command based on the

current context. This further implies that only those

commands that are applicable based on the current context

can be selected. The environment should provide an easy

means for integrating external tools. Also the invocation

of the tools should be done automatically based on the

software engineer’s context within the method. If the

method has rules or procedures for operation, then the

environment should provide facilities for encoding the

procedures such that as the software engineer applies the

method, the environment can apply the procedures based on

previous input and modify existing information as well as

synthesize new information.

www.manaraa.com

73

2.5 ENVIRONMENTS TO SUPPORT MULTIPLE SOFTWARE

ENGINEERING METHODS

In addition to the computer-based support requirements

for software engineering methods, the following features are

necessary to support software engineering methods within an

env i ronment:

o Mechanisms for relating information and structure

between software engineering methods and

o Common storage representations.

Methods now exist to support each phase of the software

life cycle. However, methods vary widely as to type

(graphical as opposed to textual) and often are incompatible

with each other. Further, a method used in one phase may

not produce output suitable for use by a different method in

the next phase. For instance, SADT used in the system

design phase produces diagrams which cannot be directly

translated into Jackson Method program designs.

Since the methods are not compatible phase to phase,

there is a tendency by software engineers to only apply the

method during the initial iteration of the software life

cycle. If a requirements change is proposed during the

system design phase, the likelihood is that its impact will

be strictly on the system design and it will not be applied

to the requirements analysis method to insure consistency

www.manaraa.com

7A

and completeness with all of the other requirements. The

greater the distance between the phases in which the error

was found and the phase in which it was made, implies a

greater loss in information. This tendency also undermines

the documentation value of the method as a representation of

the design, if the method is not being re-applied and

updated as changes o c c u r .

An environment should be capable of handling all the

methods used during the software life cycle to create

software. The ability to capture the information created

during each phase of the software life cycle and apply it to

the subsequent phases is necessary to provide complete

computer based support to the software engineering process.

An obvious solution to this problem is to create a new

integrated method which can support each of the software

life cycle phases. Not only is this a monumental task, but

several of the existing methods are good for specific

software engineering tasks and have been used successfully.

Building an integrated method that is effective for all

phases and consistent in use may be impossible considering

the diverse activities involved involved in software

specification, design and coding. An alternative solution

is to provide an environment to uniformly support different

methods in the software life cycle.

www.manaraa.com

75

Further, providing a common interface to all the

methods greatly strengthens the value of the methods to the

overall software development process. In addition to

sharing, the information can be propagated, which eliminates

unnecessary copying of data and insures redundant

information will be accurate. A common model for

representing the methods also opens up the possibility of

analyzing the results of method applications between

software life cycle phases. For example, the ability to

make sure that all requirements are met by software designs

and implementation can be accomplished by linking

requirements and their satisfying modules together between

methods. A tool can then check and make sure that all

requirements are paired and generate a report listing the

pair ings.

2.6 REQUIREMENTS FOR SOFTWARE ENGINEERING METHODS

This chapter has presented several software engineering

methods to isolate these features of the methods that must

be supported by a model for methods. Four basic

requirements must be met to build a model for software

engineering methods.

www.manaraa.com

76

o Represent the method structure)

o Encapsulate the meaning of the structure*

o Provide the capability for expressing the rules and

procedures of the method use and

o The model must be capable of being easily implemented on

a computer so that computer based support can be

supplied to these methods.

The structure of the method refers to the elements of

the method, such as the boxes of the Jackson Method and the

SADT Method. Also the model must be able to represent the

connections between the elements, such as the lines of the

Jackson Method or the arrows of the SADT Method. These

elements are used to structure the software and the model

must be flexible enough and robust enough to easily allow

the expression of a variety of methods.

The meaning of the structure is the semantics of the

arrangement of the method elements. For instance, the

arrangement of subroutines into a hierarchical Call

Structure means that if two modules are connected then one

of the modules is above the other in the diagram. The model

must be able to represent this meaning, too.

In addition to describing elements for representing

software, most methods include rules which describe how the

software is transformed into the elements of the method.

For example, SADT requires that at most six boxes may be

contained on any single page of an SADT Diagram. The model

www.manaraa.com

77

must accommodate the specification of such rules, so that

the method can be correctly applied.

To facilitate the application of software engineering

methods, the model must be amenable to easy implementation.

This requirement extends computer support to existing

methods that are currently unsupported or undersupported.

It also provides the potential for computer support for new

methods as they are created.

Further, representing the structure of software

engineering methods, requires the following:

o Chunking of concepts,

o Representation of the connection of concepts (chunks)

together as a directed graph. The connection should be

capable of representing trees, hierarchies and networks,

o Storage of text blocks,

o Storage of attributes of the chunks,

o Procedures to perform processing of stored information,

o A Query Language to locate information based on the

structure and content of the method and

o Secondary Links to represent relations between method

concepts different from the primary connections of the

method.

Most software engineering methods attempt to provide

either a compact notation for the software or an organized

structure for the software. The elements of the method

(notation or structure) allow for the concepts of the method

www.manaraa.com

78

to be "chunked" or aggregated. The model must provide a

component to represent these "chunks".

Structure implies connection, so the model must allow

the concepts to be connected and arranged into a meaningful

structure embodied by the method. Numerous examples of these

connections from software engineering methods have already

been cited, most of which are arrows or arcs, but

indentation in an outline is another way to organize or

connect concepts in a text based method.

To support text based methods, the model must allow the

inclusion of arbitrarily long sequences of text. At the

other extreme, the model must allow for the definition and

storage of attributes which describe the concepts of the

method. For example, management methods, record dates,

program sizes and percentages, all of which must be stored

precisely for fast retrieval and manipulation.

Finally, a facility for building procedures to process

the information represented by the method must be provided

to build tools to translate the information to external

sources or to other methods, or do local processing.

To effectively support the software engineer using a

method expressed in the model, a query language is essential

to locate information organized by the method. This

requirement becomes more important as the size of the

software represented by the method grows.

www.manaraa.com

79

The following list of implementation requirements not

only are characteristics of good software, but are necessary

for a model to represent methods, if the resulting

implementation is to be useful,

o Easy to use interface,

o Efficient and fast storage and retrieval of Entries and

Un its,

o Graphic views of Units and their Refinement Link

struc tures,

o Robust and easy to use text editor and

o Flexible tool interface.

A good interface will allow the software engineer or

application area specialist to use the model implementation

easily with little training. An easy to use system will

make the value of the model implementation greater.

A storage and retrieval mechanism can be used to store

the elements of the TRIAD model. The mechanism can range

from a B-tree scheme to a ful1 featured database management

system. However, the storage and retrieval mechanism must

be efficient enough to accommodate method applications for

large pieces of software. The response time must be fast

enough to allow the software engineer to work without

waiting for responses. A storage and retrieval mechanism

should allow the implementation to support version control

and multi-user access to a method use and method definition.

www.manaraa.com

80

The efficient storage of the method structure and

information contained within the structure* ensures that

queries concerning the software in the method will be

quickly answered. As with the interface, good response

increases the likelihood that the model implementation will

be used.

A package to provide graphic views of graphical methods

such as Jackson, SADT or Dataflow Diagram is essential for a

software engineer to use these methods with the model

implementation. In addition to merely presenting a graphic

view, the implementation should allow the user to manipulate

the view directly which will result in the changes being

recorded in the method representation.

The text editor is necessary for those methods which

are largely textual, such as requirements or documentation

methods. If the text editor is or resembles the standard

one available on the host computer system, the user will be

able to quickly begin entering and modifying the text in the

m ethod.

Finally a flexible tool interface is required to

exploit existing tool support for some methods. The

interface should contain primitives for extracting

information from the method, as well as providing controlled

invocation of the tool from the model implementation.

www.manaraa.com

CHAPTER III

TRIAD MODEL DEFINITION

The preceding chapter provided the motivation for

creating a model to represent software engineering methods.

In addition, a brief description of the TRIAD model was

presented in Chapter I. This chapter gives a precise formal

definition of the two major components of the TRIAD model

together with a description of the primary operations which

the system provides for defining and using software

engineering methods.

3.1 THE TRIAD MODEL

In order to support a variety of software engineering

methods, the TRIAD model must have two components. The

first component is a high level system which is used to

specify particular methods such as the Call Structure

method, the Jackson Method or the Dataflow Diagram Method.

It is called the Method Definition Component and it allows

the method definer to specify the names and general

structures of the various general classes and categories of

objects to be used in a particular method.

81

www.manaraa.com

as

The second component of the model is a lower level

system, the Method Use Component? which is used to

manipulate individual usage instances of a particular

method. It might, for example, be used to design a payroll

program following the Jackson Method.

This division into two components is analogous to a

similar division employed in databases. The Method

Definition is analogous to the database schema, while Method

Use is analogous to the storage and retrieval of data

according to the schema.

3.1.1 THE TRIAD METHOD DEFINITION COMPONENT

A common feature of all software engineering methods is

that they identify a small number of primary objects which

are used to describe software. These objects would be the

bubble and box of the Dataflow Diagram or the box of the

Jackson Method. TRIAD uses the term Unit Class (UC1) to

describe these objects. Figure 9 shows the formal

definition of the Method Use portion of the TRIAD model.

The Unit Classes are represented by the set in the upper

right corner of the figure which is labeled U C 1 . Operations

will be provided which allows a method definer, analogous

to the database administrator, to identify the particular

www.manaraa.com

0 3

Unit Classes which a method will use. One of the Unit

Classes is designated as the Initial Unit Class to ensure

that the network of Unit Classes is created properly. The

Initial Unit Class (IUCL) is shown in the figure as a point

contained within the set labelled, U C L .

lext_Category' IUC1
Class_for

Cat_Refines_to
UC1CCat

AN

■o

PR TD

Figure 9. Method Definition Component of the TRIAD Model

Typically these Unit Classes will contain subcomponents

such as the labels contained within the boxes of both the

Dataflow Diagram and the Jackson methods. These labels

www.manaraa.com

8A

describe the processing that the boxes represent. These

subcomponents are identified in the TRIAD method definition

system as Component Categories (CCat) and are represented in

Figure 9 by the set labeled CCat in the upper left hand

corner of the figure.

Each Component Category, y, belongs to a particular

Unit Class, s. This is formalized in the TRIAD model using

the Class_for function, which is shown in the figure as the

arrow from the CCat set to the UC1 set, and which is written

as Class_for(y) = s. The model is constrained such that

each Component Category, y, must map to some Unit Class, s.

The Component Categories within each Unit Class are ordered

by the sequence in which they are created. The Next_CCat

function, which is shown in the figure as the circular arrow

from the CCat set to itself, maintains the sequential order.

That x is the next Component Category of a Component

Category y is then denoted by Next_CCat(y> = x. The

following constraint ensures that the Next_CCat function

within a Unit Class points to only one Component Category

and that the Component Categories do not precede each other.

For all x and y in CCat, if Next_CCat(x) = Next_CCat(y) then

x = y and Class_for(x) = Class_for<y) iff there exists an

integer k such that Next_CCat * (x) = y or Next_CCat k

< y) = x .

www.manaraa.com

Each Unit Class has at least one Component Category

which has the same name as the Unit Class and is used as a

repository for information about the entire Unit Class

rather than just a single Component Category. The notion of

a Component Category is formalized by the function

First_CCat which gives the first Component Category for each

Unit Class. Note that if s is a Unit Class and

x = First_CCat(s) then Class_for(x> = s. In addition, to

ensure that x is truly the first Component Category in the

Unit Class, there is a constraint that for all y in CCat, if

Class_for<y) = s then Next_CCat(y) =|= x.

A Method Cursor labelled Cm, which is shown in the

figure as a point within the CCat set, contains the current

Component Category and provides a reference point for the

method definer. The value of the cursor is changed by an

operator which is used to navigate through the method

def i ni t ion.

The Attribute Name set defines the names of attributes

which are used to hold descriptive information about the

objects of the method. The Attribute Names are associated

with a Component Category and in addition each Attribute

Name has an associated Type Definition given by the

Type_Def_of function shown in the figure as an arrow from

the AN (Attribute Name) set to the TD (Type Definition) set.

www.manaraa.com

86

For each AN, t, and T D , d, the function is formally defined

as Type_Def_of(t) = d. Each Attribute Name, t, is

associated with a Component Category, y, by the function

Cat_of_Attr which is shown as the arrow from the AN set and

to the CCat set in the figure and is formally defined as

Cat_of_Attr<t) = y. This function associates the Attribute

Names with the correct Component Categories.

The objects in software engineering methods are usually

interconnected in various ways. In the case of the Jackson

and Dataflow Diagram Methods, the boxes are connected by

lines or arcs. In text based methods such as a

documentation methods and requirements methods, the objects

(descriptions) are typically connected according to their

position in an outline thereby creating a hierarchy of

objects. The TRIAD model represents these interconnections

using the Refinement Linkage. This relation is from a

Component Category, Y, to a Unit Class, S, and is shown in

the figure as the fat arrow immediately below the Class_for

arrow. The relation is formally defined as

Y Cat_Refines_to S.

In addition to the Refinement Linkage, other Secondary

Linkages may be necessary to represent other relationships

between the objects in the method. For example, both

Jackson and the Dataflow Diagram break the processing into

www.manaraa.com

B7

smaller pieces. At some point these pieces need to be

combined into a program or into several modules, if the

software is large. In the TRIAD model, Secondary linkages

can be created between the first Component Category (which

represents the entire Unit Class) to represent the grouping

into modules. The Secondary Linkages are shown in the

figure as the set labeled LN, Link Names. Between the LN

and CCat are two arrows representing the domain, Dom_of

function, and codomain, CoDom_of functions, for the link

name. For a Link Name, n, and two distinct Component

Categories, x and y, the functions are formally defined as

Dom_of(n) = y and CoDom_of(n) = x.

In addition to the objects of a software engineering

method, rules and procedures are provided to manipulate

these objects according to the intent of the method. These

rules are represented in the TRIAD model by procedures

written in a programming language. The name and conditions

under which these Procedures are to be invoked is associated

with the Component Categories. The Procedure References are

shown in the figure as the set PR in the lower left hand

corner. The function Proc_for, shown in the figure as the

arrow from the set CCat to the set PR, defines the Procedure

Reference, p, for a Component Category, y, formally as

Proc_for(y) = p.

www.manaraa.com

88

Table A gives a formal definition of the Method

Definition part of the TRIAD model.

www.manaraa.com

89

Table A. Formal Definition of the TRIAD Model

Method Definition Component

A method M is defined formally by a 17— tuple:

M=(CCat, UC1, IUCL, Next_Category, Cat_Refines_to,

Class_for, First_Cat_of, LN , PR, AN, T D , Type_Def_of,

Dom_of, CoDom_of, Proc_for, Cat_of_Attr, Cm)

1. CCat c_ ch_strings is the set of Component Category names

used by the method,

2. UC1 c ch_strings is the set of Unit Class names used by

the method,

3. IUCL £ UC1 is the Initial Unit Class,

A. Next_Categor y : CCat -> CCat sequences the Component

Categories for each Unit Class,

5. Cat_Refines_to c CCat X UC1 is a relationship which

determines which Unit Classes a Component Category can

refine to,

6. Class_for: CCat -> UC1 determines the Unit Class each

Component Category belongs to,

7. First_Cat_of: UCL -> CCat identifies the initial

Component Category for each Unit Class,

8. LN c ch_strings is the set of Link Names,

9. PR c. ch_str ings is the set of Procedure References for

the Component Categories of the method,

www.manaraa.com

Table 4 (continued) 90

10. AN c. ch_strings is the set of Attribute Names used in

the method,

11. TD c ch_strings is the set of Type Definitions,

12. Type_Def_of: AN -> TD determines the type definition for

each Attribute Name,

13. Dom_of: LN -> CCat determines the Domain Component

Category for each Link Name,

14. CoDom_of: LN -> CCat determines the CoDomain Component

Category for each Link Name,

15. Proc_for: CCat -> PR determines the Procedure Reference

for each Component Category,

16. Cat_of_Attr: AN -> CCat tells which Component Category

each Attribute is associated with,

17. Cm € CCat is the Cursor for the method and points to the

Component Category currently being manipulated during

method definition.

3.1.2 THE TRIAD METHOD USE COMPONENT

Technically, the method definition M provides a sort of

template into which the particular software desired must be

fitted. This is done by creating a variety of instances of

www.manaraa.com

91

the Unit Classes, Component Categories, etc. which were

identified in the method definition. This process results

in a set U of Unit Class instances which are called the

Units of the particular method use. Similarly, the set C of

Component Category instances will be called the Components

of the method use and so forth.

As an example, if a software engineer is applying the

Dataflow Diagram Method, then there will be a Unit Class

"Processing Box" identified in the method definition. Each

time he wishes to add a processing box to the software he is

describing, he will ask the system to create a new Unit of

the "Processing Box" class. If the software consisted of a

source of data, two processing boxes and a data store, then

four Unit Class instances would be created— one instance of

the Unit Class "Source", one instance of Unit Class "Store"

and two instances of Unit Class "Processing Box". An

instance of a Unit Class automatically creates instances of

all the Component Categories, Attribute Names and Link Names

and the software engineer can use these to supply the

details about the particular Unit.

The full TRIAD model is fairly complex and is depicted

in Figure 10. The top part of the diagram, above the thick

horizontal line, repeats the method definition given in

Figure 9 while the lower portion of the diagram lays out the

www.manaraa.com

9a

elements needed to describe a method usage. After a software

engineering method has been translated into a TRIAD method

using the Method Definition System, then the TRIAD Method

Use System is available to create particular software

documentation following the method defined.

www.manaraa.com

Figure
10.

TRIAD
Model

Method DefinitionMethod Use

"Dom_of

Link_IName_otSource_of]

Procjfor

rr

|Aitr_VaI_ot

Atlr_Name_ot

Class__of

U)

www.manaraa.com

99

The use of a method is begun by the creating an Initial

Unit which is in an instance of the Unit Class designated as

the Initial Unit Class. For example, in the Dataflow

Diagram Method the first symbol is a "source" for the

program’s data. The Initial Unit will, of course, be a

member of the set of all Units which are represented in

Figure 10 by the set U in the lower right corner. The

Initial Unit Class (IUCL) is the point contained within the

set U. The Class_of function shown in the figure as the

arrow from the set U to the set UC1 in the Method Definition

portion of the figure records for each Unit created the Unit

Class of which it is an instance. If Unit u is an instance

of Unit Class S, then formally, Class_of(u) = s. A
constraint on the model that the Initial Unit, IU, must be

an instance of the Initial Unit Class is given formally as

Class_of(IU) = IUCL.

Whenever a Unit is instantiated, new instances of all

its Component Categories are created and added to the set C

of Components. A "label" describing the contents of a "box"

is an example of a Component in the Jackson Method or

Dataflow Diagram Method. The Component represents the

"label" for each box represented by a Unit instance. To

record that Components, c, belong to particular Units, u,

the Unit of function is included in the model so that

www.manaraa.com

95

Unit_of(c) = u. This function is shown in the figure as the

arrow from the set C to the set U. Each Component c is

created as an instance of a Component Category y and the

model records this association by Category_of(c) = y. The

Category_of function is the arrow on the left side of the

figure from the set C to the set CCat. To maintain the

consistency of the method use with the method definition,

the category of the component must always belong to the same

Unit Class as the Unit to which the Component belongs. For

a Component, c, this constraint is formally defined as

Class_for<Category_of(c)) = Class_of(Unit_of<c)).

Certain software engineering methods include components

which actually contain an arbitrary number of entry items.

For example, a project management method would allow an

arbitrary number of programmer name entries in the "author"

component of a "Module" Unit. In the TRIAD model then each

Component Category may be replicated to permit sequences of

method subcomponents. In the method use, Entries are

created for each element in a sequence of subcomponents. At

least one Entry is created for each Component. An example

of the subcomponents in a method is the flow of data between

symbols in the Dataflow Diagram. Data may go from one symbol

to several other symbols. Each flow would be represented by

a separate Entry. The Entries are shown as the large set in

www.manaraa.com

96

the middle at the bottom of the figure and is labelled E.

The ownership of an Entry, e, by a Component, c, is denoted

by the function Component_of, which is formally written as

Component_of<e) = c. The function is shown as the arrow

from the set E to the set C.

The Entries are in order in a component based on the

order they are created. The function Next_Entry, which is

shown in the figure as the circular arrow from the set E and

to the set E, provides the means for navigating through the

sequence of Entries in a Component. The function is

formally defined for two adjacent Entries, e and f, as

Next_Entry<e) = f. The following constraint ensures that

the Next_Entry function within a Unit points to only one

Entry and that only one entry precedes the other. For all e

and f in E, if Next_Entry(e) = Next_Entry(f) then e - f and

Component_of<Unit_of(e)) = Component_of(Unit_of<f)) iff for

some integer k, Next_Entry (e) = f or Next_Entry (f) = e.

Attributes may be associated with each Entry according

to the association of Attribute Names and Component

Categories in the method use. For example, an Attribute

Name was defined for the Jackson Method and Dataflow Diagram

method to contain the symbol descriptions. The instance of

the Attribute Name, the Attribute would contain the actual

text describing the instance of the symbol represented by

www.manaraa.com

97

the Unit Class. The attributes are shown in the figure as

the set labelled A in the middle at the right side. The

function Entry_of, shown in the figure as an arrow from the

set A to the set E> associates the Attribute* a* with an

Entry, e, and is formally defined as Entry_of(a) = e. Shown

in the figure as an arrow from the A set to the AN set in

the method definition portion of the figure, the function

Attr_Name_of establishes the correspondence between the

Attributes, a, and the Attribute Names, t, and is formally

defined as Attr_Name_of(a) = t. The values of the

Attributes are contained in the set Attribute Values shown

in the figure as the set labelled AV located above the set

labelled A. The function Attr_Val_of shown in the figure as

a label from the A set to the AV set, establishes the

mapping from Attributes, a, to their Attribute Values, v,

and is formally defined as Attr_Va1_ o f <a) = v. Each of the

Attribute Values must in turn have a type, which is defined

by the Type_of function shown in the figure as the arrow

from the set AV to the set TD in the method definition

portion of the figure. This function is formally defined as

for each Attribute Value, v, there is a Type Definition, d,

such that Type_of(v) = t. To maintain the consistency

between the method definition and the method use, two

constraints are needed. The first constraint ensures that

www.manaraa.com

98

an Attribute, a, associated with an Entry in a Component has

that Attribute Name related to the same Component Category

that is mapped to the Component and is formally defined as

Cat_of_Attr(Attr_Name_of<a)) =

Category_of(Component_of<Entry_of(a))). The second

constraint ensures that an Attribute, a, has an Attribute

Value whose Type Definition is the same as that of the

Attribute Name and is formally defined as

Type_Def_of(Attr_Name_of<a >) = Type_of(Attr_Val_of<a)).

Refinement Links are shown in the figure as the arrow

from the set E to the set U. The Refinement Link in the

method use is an instance of the Refinement Linkage defined

in the method definition. The Jackson and Dataflow Diagram

Methods have arcs between the symbols which in the method

definition are represented as Refinement Linkages from a

Component Category to a Unit Class representing a symbol.

In the method use, the Refinement Links are from an Entry,

belonging to a Component in a Unit to another Unit, thus,

representing the flow of control or data from one symbol to

another. The function is shown in the figure as an arrow

from the set E to the set U and is formally defined as for

an Entry, e, there may exist a Unit, u, such that

Refinement_of(e) = u.

www.manaraa.com

99

In the same way that the contents of the Units must

conform to the contents of the Unit Classes, the Refinement

Links must be created in conformity to the Refinement

Linkages in the method definition. For all e in E and for

all u in U, if there is a refinement from e to u then the

Component Category of the Component which contains the

Entry, e, must be related to the Unit Class which the Unit,

u, is an instance. This constraint is formally defined as

if Refinement_of(e) = u, then

Category_of<Component_of<e)) Cat_Refines_to Class_of(u).

Units can not refine to themselves which is formally defined

as Ref inement_of < e) =j= Uni t_of (Component_of (u)) .

The I5_Predecessor_of relation is defined to determine

if two Units, u and v, are directly connected by way of a

Refinement Link. If u is the predecessor of v then there is

an Entry in the Unit u which refines to the unit v. This

relation is formally defined as u Is_Predecessor_of v if and

only if for some e in E, Refinement_of<e) = v and

Unit_of<Component_of(e)) = u. To ensure that all units

except the Initial Unit are refined to by at least one

Entry, there must exist an integer k for all units such that

through k applications of the Is_Predecessor_of relation,

the Initial Unit can be reached. This constraint is

formally stated as IU Is_Predecessor_of ** u.

www.manaraa.com

100

Secondary Links can also be created between Entries

according to the Link Names defined in the method

definition. These Secondary Links may be used to connect

processing symbols together in either Jackson or Dataflow

Diagram for example, into modules. An actual link instance

is created from the Link Name according to the function

Link_Name_of which is shown in the figure as the arrow from

the set L, representing the Links, to the set LN,

representing the Link Names. The function is formally

defined for each Link, 1, there must exist a Link Name, n,

such that Link_Name_of(1) = n. The functions Source_of and

Target_of provide the mappings of the Link, 1, for the

source and target entries of the link to the Entries, e,d,

which are formally defined as Source_of(l> = e and

Target_of(l) = d. These functions are shown in the figure

as two arrows originating from the set L to the set E. To

ensure that the links conform to the Link Name in the method

definition which is mapped to from the Link, a constraint is

placed on them such that the Source_of and Target_of

functions must map to Entries whose Components are of the

same Component Category as that specified by the Dom_of and

Codom_of functions from the Link Name. This constraint is

formally defined for all 1 in L,

Category_of< Component_of< Source_of(1))) =

www.manaraa.com

101

Dom_of(Link_Name_of(1)) and

Category_of(Component_of< Target_of(1>)> =

CoDom_of(Link_Name_of(1)>. A further constraint is that

only one Link with the same Link Name can have the same

source and target entries. This constraint is formally

defined for two Links, k and 1, as

if Source_of(k) = Source_of(l) and

Link_Name_of(k) = Link_Name_of<1) or

if Target_of(k) = Target_of(l) and

Link_Name_of<k) = Link_Name_of(1) then k = 1.

As in the method definition, a Cursor, C r , is used to

maintain a current position within a method use. The figure

shows the method use cursor as a point within the set E.

This cursor always points to an Entry and is used as the

target entry for the method use operators requiring a

target. When a source entry is also required by a operator,

the Mark Entry, Me, represented by the other point within

the set E is used.

The formal definition of the TRIAD model method use is

given in Table 5. The constraints upon the TRIAD model are

formally defined in Table 6 which follows the table

containing the method use formal definition.

www.manaraa.com

102

Table 5. Formal Definition of the TRIAD Model

Method Use Component

A Method Use S is defined for a method M is the 22-tuple:

S=(E, U, IU, Cr , Me, Next_Entry, Refinement_of, C, Unit_of,

L, A, AV, Category_of, Class_of, Link_Name_of, Attr_Name_of,

Attr_Val_of, Source_of, Target_of, Entry_of, Component_of)

1. E is the set of Entries,

2. U is the set of Units,

3. IU £ U is the Initial Unit,

A. Cr is the method use cursor and points to the current

entry being manipulated,

5. Me is the method use mark in the Entry set and points to

an Entry,

6. Next_Entry: E -> E structures the entries for each

component,

7. Refinement_of: E -> U determines the Unit to which each

refinable Entry refines,

8. C is the set of Components,

9. Unit_of: C -> U determines the Unit each Component

belongs to,

10. L is the set of Links,

11. A is the set of Attributes,

12. AV is the set of Attribute Values,

www.manaraa.com

Table 5 (continued) 103

13. Category_of: C -> CCat maps the Components to Component

Categories,

14. Class_of: U -> UC1 maps the Units to Unit Classes,

15. Link_Name_of: L -> LN determines the Entry Link Name for

each link,

16. Attr_Name_of: A -> AN determines the Attribute Name for

each Attribute,

17. Attr_Val_of: A -> AV determines the Attribute Values for

each Attribute,

18. Type_of: AV -> TD determines which Attribute Value is of

which Type Definition,

19. Source_of: L -> E determines the Source Entry for each

Link ,

20. Target_of: L -> E determines the Target Entry for each

Link,

21. Entry_of: A -> E determines the Attribute associated

with each Entry and

22. Component_of: E -> C determines the Entries in each

Component,

www.manaraa.com

104

Table 6. TRIAD Model Constraints

Let the function First_CCat be defined by

First_CCat(s : UC1) = x and Class_for(x) = s and

For all y £ CCat if Class_for(y) = s then Nex t_CCat < y) =|= e

Lemma First_CCat is a total function

Next_Category Constraint:

For all x,y: CCat if Next_CCat(x) = Next_CCat(y) then

x=y and Class_for(x)=Class_for(y) iff there exist a k:

N such that Next_CCat (x) = y or Next_CCat (y) = x

Next_Entry Constraint:

For all d,e: E if Next_Entry(d) = Next_Entry<e) then

d=e and Component_of(Unit_of(d)) =

Component_of<Unit_of(e)) iff there exists a k: N such

that Next_Entry (d) = e or Next_Entry ̂ (e) = d

Component Category Contents Constraint:

For all y £ CCat there exists an s £ UC1 such that

Class_for(y) = s

Initial Unit Constraints:

There exists an IU £ U and an s € IUCL such that

Class_of<IU) = s

Let the relation Is_Predecessor_of c U X U be

defined by u Is_Predecessor_of v iff there exists an e

£ E such that Refinement_of(e) = v and

Unit_of(Component_of(e)) = u

www.manaraa.com

Table 6 (continued)

Connectivity Constraint:

For all u £ U there exists a k such that

IU Is_Predecessor_of * u

Unit Contents Constraint:

For all c € C,

Clas5_for(Category_of(c)) = Class_of(Unit_of(

Refinement Constraint:

For all e € E and u £ U, if Refinement_uf(e) =

Category_of(Component_of(e)> Cat_Refines_to

Class_of (u) and

Refinement_of(e) ^ Unit_of(Component_of(e))

Component Constraints:

For all e £ E» there exists a c € C,

such that Component <e> = c

Attributes Constraints:

For all a £ A, Cat_of_Attr(Attr_Name_of (a)) =

Category_of< Component_of(Entry_of(a))) and

Type_Def_of(Attr_Name_of(a)) =

Type_of(Attr_Val_of(a))

Links

For all 1 £ L,

Category_of(Component_of(Source_of(1))) =

Dom_of(Link_Name_of (1)) and

Category_of(Component_of(Target_of(1))) =

105

))

then

www.manaraa.com

Table 6 (continued) 106

CoDom_of(Link_Name_ of(l)) and

For j,k € L, if (Source_of(j) = Source_of(k> and

Link_Name_of(j) = Link_Name_of(k)> or

(Target_of(j) = Target_of(k) and

Link_Name_of(j) = Link_Name_of(k)) then j=k

3.2 TRIAD MODEL OPERATORS

The TRIAD model operators are divided into two groups

corresponding to the two components of the TRIAD model. The

method definition operators allow the method definer to

create and modify the sets comprising the method definition.

Table 7 lists the operators (in pairs where appropriate) and

a brief description of the operator’s function. The target

of an operator is assumed to be the position of the method

cursor within the Component Category set. The word

"current" when applied to the Component Category refers to

the category currently pointed to by the method cursor.

www.manaraa.com

107

Table 7. Method Definition Operators

Create/Delete Method creates/deletes an entire method

definition

Add/Delete Unit adds/deletes a Unit Class. The Add_Unit

operator also creates the first Component Category

in the class giving it the same name as the class

Add_Category adds a new non-refinable Component Category

following the current Component Category.

Add_Refinab 1e_Category adds a new refinable Component

Category following the current Component Category.

D e 1ete_Category deletes the current Component Category.

Add_Type_Definition adds a new type to the set of type

def i ni t ions.

Add/Delete Attribute adds/deletes an Attribute Name. The

Add_Attribute operator also tells which type

definition belongs to the Attribute Name .

Add/Delete Link Name adds/deletes a link name from the

current Component Category.

Add/Delete PC Reference adds/deletes a PC reference from the

current Component Category.

Next/Previous Category moves the method cursor to the

next/previous Component Category if the cursor is

not already pointing to the last/first Component

Category in the Unit Class.

www.manaraa.com

Table 7 (continued) 10B

First_CCat positions the method cursor at the first

Component Category within the named Unit Class.

www.manaraa.com

The method use operators manipulate the sets specified

during method definition. Many of these operators assign

values to the names defined previously. As with the method

definition operators, a cursor is used to specify the

default target entry for the operators. For those operators

requiring a source as well as a target, an additional cursor

called the Mark Entry is provided. The word "current"

applied to an entry refers to the entry currently being

pointed to by the cursor.

Table 8 contains the names of the method use operators

and a brief description of their function.

www.manaraa.com

1 1 0

Table 8. Method Use Operators

Use/Delete Method uses/deletes a method use.

Create_Unit creates a copy of Unit Class. An Entry and

Component is created for each Component Category

within the Unit Class.

Mark_Entry sets the additional cursor to point to the Entry

pointed to by the cursor.

Refine creates a Refinement Link from the current Entry to

the Unit pointed to by the Mark Entry.

Delete_Unit deletes the Unit which is the Unit of the

current Entry, provided the current Entry is the

first Component of the Unit. Also the Unit must

not have any Secondary Links or additional

Refinement Links connected to it.

Rep 1icate_Entry creates another Entry of the same Category

following the current Entry in the same Component

as the current Entry.

Delete_Replicate deletes the current Entry, provided it is a

replicate within a Component and that it is not

the last replicate.

Change_Attr_Val_of changes the value of the specified

Attribute associated with the current Entry to the

new specified value. The value must be of the same

type as that defined for the Attribute name.

www.manaraa.com

Table 8 (continued) 111

Change_Link changes the specified link (source or target) to

be the current Entry.

Follow_Link follows the specified link which has either the

current Entry as its source or target and sets the

cursor to the named link’s target or source.

Move_Entry moves the current Entry to follow the Entry

pointed to by the Mark Entry. Both Components

must be of the same Category.

Next/Prev Component sets the cursor to the first/last Entry

in the next Component within the same Unit

provided the cursor is not already pointing to the

last/first Component within the Unit.

Next/Prev Entry sets the cursor to the next/previous Entry

within the current Component provided the cursor

is not already pointing to the last/first Entry in

the Component.

Visit_Refinement sets the cursor to the first Entry within

the Unit which the current Entry refines to

provided the current Entry is refinable and has

been refined to a Unit.

www.manaraa.com

3.2.1 TRIAD MODEL METHOD DEFINITION OPERATORS

1 12

Table 9 gives the formal definition for each TRIAD

method definition operator. Each operator is presented with

its name, parameters, pre and post conditions (require and

ensure) and a description of the operator. All parameters

are assumed to be constant. The number sign (#) preceding a

name indicates that the name represents the old value as

opposed to the current value. The ^ symbol represents the

undefined value for a function and p) is the empty set.

www.manaraa.com

113

Table 9. Formal Definition of the

TRIAD Method Definition Operators

Operat ion Create_Method(Start_Unit_Name : ch_string)

Require CCat=(i5 and UCl=(i5 and AN=fd and PR=& and IUCL=(i5

Ensure IUCL = Start_Unit_Name and

UC1 = {IUCL > and

CCat = <IUCL> and

Class.for(IUCL) = IUCL and

Cm = IUCL

Descr ipt ion The Create Method operator begins the

definition of a new method. It creates the first

Unit, named Start_Unit_Name and places this name in

the Initial Unit Class <IUCL). The first Component

Category (CCat) is also created with name

Star t_Uni t_Name.

Operat ion Delete_Method;

Require CCat^#) and UCl^ii and AN^jd and P R ^ .

Ensure CCat=0 and UCl=j<J and AN=pS and PR=f6.

Descr iption The Delete Method operator deletes the current

method.

www.manaraa.com

Table 9 (continued) 1 1 4

Operation Add_Unit(Unit_Name : ch_string)

Require Unit_Name ̂ #UC1

Ensure UC1 = #UC1 U (Uni t_Name> and

CCat = #CCat U CUnit_Name> and

Class_for(Unit_Name) = Unit_Name and

Cm = Unit_Name>

Descr iot ion The Add Unit operator creates a new Unit Class

with name Unit_Name and the first Component Category

in the unit is created with the same name, also. The

method cursor, Cm, is set to point to the first entry

for the entire unit.

Operation Delete_Unit

Require #Cm = First_CCat(Class_for(#C m))

Ensure UCL = #UCL - {C 1ass_for<C m)> and

For all y: CCat, C CCat = #CCat - (y> and
i

For all n: LN

Dom_of(n) = J- iff #Dom_of(n> = y and

CoDom_of(n) = -L iff #CoDom_of(n) = y

For all t: AN,

Cat_of_Attr(t) = y iff #Cat_of_Attr(t > = y and

y =j= #Cm> 3

iff Class_for(y) = Class_for(#Cm) and

Cm = IUCL

Description The Delete Unit operator deletes the Unit

www.manaraa.com

Table 9 (continued) 1 15

Class of the is the unit for the Component Category

pointed to by the method cursor, Cm. The cursor must

be on the first category of the class. All components

which are members of the deleted unit are also

deleted.

□peration Add_Category(CCat_Name : ch_string)

Reouire CCat_Name | #CCat

Ensure CCat = #CCat U CCCat_Name> and

Class_for(CCat_Name) = Class_for(# C m) and

Next_Category<# C m) = CCat_Name and

Cm = CCat_Name

Descr i pt ion The Add Category operator adds a non-refinab 1e

Component Category with name CCat_Name following the

CCat pointed to by the method cursor, Cm.

□Deration Add_Refinable_Category(CCat_Name, Unit_Name :

ch_str i n g)

Reouire CCat_Name ̂ #CCat

Ensure CCat = #CCat U CCCat_Name> and

Class_for(CCat_Name) = C 1ass_for(# C m) and

Next_Category(# C m) = CCat_Name and

Cm = CCat_Name and

CCat_Name Refines_to Unit_Name

Descr ipt ion The Add Refinable Category operator adds a

refinable Component Category with name CCat_Name

www.manaraa.com

Table 9 (continued) 116

following the CCat pointed to by the method cursor,

Cm. The new category refines to the Unit Class named

Uni t_Name,

□peration Delete_Category

Require cm £ #CCat and

ttCm F i r st _CCat (C 1 ass_f or (#Cm))

Ensure CCat = #CCat - [#Cm> and

For all y : CCat,

[Cm = y iff C #Cm = #Next_Category<y) and

#Nex t_Category(# C m)
iff #Next_Category(y) = #Cm

Next_Category(y) =
#Next_Category(y) otherwise and

For all n: LN r
I J- if #Dom_of(n) = #Cm

Dom_of(n) = /
] #Dom_of(n> otherwise and

j i- i f #CoDom_of(n) = #Cm
CoDom_of(n) = /

[#CoDom_of(n) otherwise and

For all t: AN,

Cat_of_Attr < t) = y

iff C #Cat_of_Attr<t > = y and

y ^ #Cm 1 1

iff Category_of<Component_of(# C m) = y

Descriotion The Delete Category operator removes the

Component Category pointed to by the method cursor,

Cm, as long as the cursor is not pointing to the first

www.manaraa.com

Table 9 (continued)

Category in the Class.

□oerat ion Add_Type_Definition(Type_Name : ch_string)

Reauire Type_Name ^ TD

Ensure TD = #TD U CType_Name>

Descr iot ion The Add Type Definition operator adds a new

type definition to the TD set.

□per a t i on Add_Attribute(Attr_Name, Type_Name : ch_string)

Reau ire Attr_Name ^ AN and

Type_Name € TD and

Cat_of _At tr < Attr_Name) #Cm

Ensure AN = #AN U CAttr_Name> and

Cat_of_Attr (Attr_Name) = #Cm and

Type_Def_of< At tr_Name> = Type_Name

Descr iption The Add Attribute operator adds the Attribute

Name named, Attr_Name and of type, Type_Name to the

Component Category pointed to by the method cursor,

C m .

Oaeration Delete_Attribute(Attr_Name : ch_string)

Reauire Attr_Name E AN

Ensure AN = #AN - <Attr_Name>

Descr iot ion The Delete Attribute operator removes the

Attribute Name Attr_Name from the Entry_Category

pointed to by the method cursor, Cm.

www.manaraa.com

Table 9 (continued) 1 18

□perat ion Add_Li nk_Name (Link_Name , CCat_Dom, CCat_CoDom :

ch_string)

Reau ire Link_Name ^ #LN

Ensure LN = #LN U CLink_Name> and

CCat_Dom = Dom_of (Link_Name) and

CCat_CoDom = CoDom_of (L i nk_Name > .

Descr iot ion The Add Link Name operator adds the Link Name

Link_Name to the Component Category pointed to by the

method cursor, Cm with domain and codomain specified

by CCat_Dom and CCat_CoDom, respectively.

Qoerat ion Delete_Li nk_Name(Link_Name : ch_string)

Reau ire Link_Name £ #LN

Ensure LN = #LN - CLink_Name>

Descr id t ion The Delete Link Name operator deletes the Link

Name named Link_Name of the Entry Category pointed to

by the method cursor, Cm.

□perat ion Add_PC_Ref er ence (PC_Name : ch_string)

Require PC_Name ^ #PR

Ensure PR = #PR U <PC_Name> and

PC_Name = Pr oc_f or (#Cm) .

Descr iot ion The Add Procedures Reference operator adds a

Procedure name to the Procedures Reference (PR) set.

The reference is attached to the Entry Category

pointed to be the method cursor, Cm.

www.manaraa.com

Table 9 (continued) 119

□peration Delete_PC_Reference(PC_Name : ch_string)

Require PC_Name € #PR and

Proc_for(ttCm) = PC_Name

Ensure PR = #PR - CPC_Name> and

Proc_for(#Cm) = -L

Descr i p t i on The Delete Procedures Reference operator

deletes the Procedures Reference named PC_Name which

is associated with the Component Category pointed to

by the method cursor, Cm.

□perat ion Next_Category

Require #Next_Category ^ J-

Ensure Cm = #Next_Category(# C m).

Descr iot ion The Next Component Category operator sets the

method cursor to point at the next entry category in

the Unit Class by applying the Next_Category function.

□perat ion Previous_Category

Require #Cm Class_for (#Cm)

Ensure For all y: CCat, Cm = y iff #Next_Category(y >=#Cm

Descr iot ion The Previous Category operator sets the method

cursor to point at the previous entry category in the

Unit Class by applying the inverse of the

Next_Category function. This operation is not

performed if the cursor is at the first Component

Category of the Unit Class.

www.manaraa.com

ie o
i

The method structure is defined using the above

operators. The software engineer defining the method

uses the Add/Delete Unit Class and Add/Delete

Component Category operators to define the structure

of the method. The Next_Category function allows the

navigation through the method definition. Attributes

and links may be added at any time. The method cursor

is used as the default for any of the operators

requiring a target.

When a Component Category is defined, it can be

specified as refinable using the Add_Refinable_Entry

and therefore one or more Unit Classes must be named

to which the Category refines to. If more than one

Unit Class is specified for the Cat_Refines_to

relation then this Component Category can refine to

any one of the Unit Classes named, but only one.

Therefore a selection or alternate feature is allowed

for refinement. Also Attribute Names can be created

and associated with either the Component Category

pointed to by the method cursor or the Unit Class

which the Component Category pointed to by the method

cursor is contained in.

If the method is specified top down (the first

unit defined has references to undefined units) then

www.manaraa.com

121

it is necessary to keep track of all Unit Class names

so that the uniqueness of the names can be preserved.

Maintaining the Unit Class name uniqueness implies not

allowing a unit to be defined with the same name as an

existing Unit Class. Also when deleting a Unit Class,

the specified Unit Class must be defined. Further,

when a Unit Class is deleted, all references to it

must be marked as undefined. Before a method can be

used and Unit instances created, all references to

undefined Unit Classes must be satisfied by either

defining the Unit Class or by removing the reference.

3.2.2 TRIAD MODEL METHOD USE OPERATORS

Table 10 gives the formal definition of the method

use operators.

www.manaraa.com

125

Table 10. Formal Definition of the Method Use Operators

Operation Use_Method

Reaui re L = & and A = f6 and C = & and E = & and U = <f> and

IU = ±- and IUCL =(= ±-

Ensure U = IU and

C 1ass_of(IU > = IUCL and

For all y : CCat >

There exists a c € C such that Cc> = C - #C and

Category_of(c > = y and

Unit_of(c) = u and

There exists an e € E such that

C <e> = E - #E and

Component_of<e) = c and

Cr = e iff Category_of(Component_of(e)) =

First_CCat(Class_of(Unit_of(Component_of(e)))

and

For all 1: L> there exists an 1 € L such that

C 11 > = L - #L and

Source_of(1) = e

iff Category_of(Component_of<e)) =

Dom_of<Link_Name_of(1)) and

Target_of(l) = e

iff Category_of(Component_of(e)) =

CoDom of(Link Name o f (1)) 3

www.manaraa.com

Table 10 (continued) 123

For all a: A, L (a> = A - #A and

Entry_of(a) = e and

There exists a t: AN such that

Attr_Name_of(a) = t iff

Cat_of_Attr(t) = y D

iff

Category_of(Component_of(Entry_of(a)))

= y3

iff Class_for(y) = IUCL and

For all e: E» Cr = e iff

Category_of(Component_of(e)) =

F i rst_CCat(C 1ass_of(IUCL))

Descr ipt ion The Use Method operator begins the use of a

method. The Initial Unit (IU) which is of type

Initial Unit Class is created. The cursor is set to

point to the first entry in the unit.

Qperation Delete_Method_Use

Reauire IU -L

Ensure L = p* and A = & and C = fb and E = (6 and U = &

Description The Delete Method Use operator deletes the

current method use.

www.manaraa.com

Table 10 (continued) iau

□perat ion Create_Unit

Require There exists an s: UCL such that

Category_of(Component_of(# C r)) Cat_Refines_to s

Ensure These exists a u £ U such that (u> = U - #U and

Refinement_of(# C r) = u and

Clas5_of (u) = Category_of (Co(npqnent_of (#Cr))

Cat_Refines_to and

For all y: CCat,

There exists a c € C such that <c> = C - #C and

Category_of<c) = y and

Unit_of(c) = u and

There exists an e £ E such that

C £e> = E - #E and

Component_of(e) = c and

Cr = e iff Category_of(Component_of(e)) =

First_CCat(Class_of(Component_of(Uni t_of(e)))

and

For all Is L, there exists an 1 £ L such that

Z i1> = L - #L and

Source_of(1) = e

iff Category_of(Component_of(e)) =

Dom_of(Link_Name_of(1)) and

Target_of(l) = e

iff Category_of(Component_of<e)) =

www.manaraa.com

Table 10 (continued) 125

CoDom_of(Link_Name_of(1))]

For all a: A, C Ca> = A - #A and

Entry_of(a) = e and

There exists a t: AN such that

Attr_Name_of(a) = t iff Cat_of_Attr(t) = y]

iff Category_of(Component_of(Entry_of(a))) = yl

iff Class_for(y) = Class_of(u) and

For all e: E , Cr = e iff

Category_of(Component_of(e)) =

First_CCat(Class_of(u))

Description The Create Unit operator creates a Unit whose

class is determined by the value of the Entry pointed

to by the Cursor, C r . The cursor must be on a

refinable entry.

□perat ion Mark_Entry

Require #Cr =|= 1-

Ensure Me = #Cr

Descr ipt ion The Mark Entry operator marks the current

Entry pointed to by the Entry Cursor, Cr.

Operation Refine

Require Ref inement_of (#Cr) = ±- and

Me :j= J-

Ensure Refinement_of(#C r > = Unit_of(Component_of(M e)) and

There exists an e: E, such that C Cr = e

www.manaraa.com

Table 10 (continued) 126

Category_of(Component_of(e)) =

F i rst_CCat_< Un i t_of(Component_of(Me >)

Descr iot ion The Refine operator creates a Refinement Link

from a non-refined refinable entry pointed to by the

cursor, C r , to the Unit of the entry pointed to by the

Mark Entry, Me, which was previously set by the

Mark_Entry operator.

Operation Delete_Unit

Require Ref inement_of < #Cr) =j= -L and

For all e : E ,

C Refinement_of(e) = Refinement_of(# C r)

iff e = #Cr and

For all 1: L and e: E,

C Source_of(1) = e iff e = #Cr and

C Target_of(l) = e iff e = #Cr and

Source_of (1) = 1 - 1 1

iff Unit_of(Component_of(#Cr)) =

Uni t_of(component_of(e))

Ensure U = #U - {Refinement_of(# C r)> and

Ref inement_of (#Cr) = -L and

[For all e: E,

HE = E - {e> and

For all a: A, A = #A - €a>

iff Entry_of(a) = e and

www.manaraa.com

Table 10 (continued) 1 2 7

For all 1: L, L = #L - Cl>

iff Source_of (1) = e or_ Target_of(l) = e]

iff Unit_of<Component_of(e)) = Refinement_of(#Cr) 3

Description The Delete Unit operator deletes the Unit

which is the refinement of the Entry pointed to by the

Entry Cursor, C r .

□peration Rep 1icate_Entry

Reouire Category_of (Component_of (#Cr)) =j=

F i rst_CCa t (Class_of < Un i t_of(Component_of(#Cr))))

Ensure There exists an e: E such that Ce> = E - #E and

Component_of(e) = Component_of(#Cr) and

Cr - e and

Next_Entry(e) = Next_Entry(# C r) and

Next_Entry(#Cr) = e

Description The Replicate operator creates a new entry,

following the one pointed to by the cursor, C r , of the

same category and in the same unit and component.

□perat ion Delete_Rep1icate

Require Category_of (Component_of (#Cr))

First_CCat(Class_of<Uni t_of(Component_of(#Cr))))

Ensure E = #E - (#Cr> and

For all a : A ,

A = #A - <a> iff Entry_of(a) = #Cr and

For all 1: L, L = #L - (1>

www.manaraa.com

Table 10 (continued) 1EB

iff C Source_of<1) = #Cr or Target_of(l> = #Cr 3

For all e: E,

(#Next_Entry(# C r) iff
J #Next_Entry<e) = #Cr

Next_Entry (e) =\
I #Next_Entry(e) otherwise

Descr ipt ion The Delete Replicate operator removes the

entry if it is not refined to a unit, in the component

which the cursor is currently pointing to,

□oerat ion Change_Attr_Va1_of(Attr_Name : ch_string,

Attr_Val_of : AV >

Require There exists an a: A, such that Attr_Name_of(a > =

Attr_Name and

Entry_of(a) - #Cr and

Cat_of_Attr(Attr_Name) =

Category_of(Component_of(#Cr))

Ensure There exists an a: A, such that Attr_Va1_of(a) =

Attr_Val_of and

AV = #AV U <Attr_Val_of> and

Type_of(Attr_Va1_of) =

Type_Def_of(Attr_Name_of(a)))

Descr ipt ion The Change Attribute Value operator changes

the value of the Attribute whose name is Attr_Name and

is associated with the Entry pointed to by the cursor,

Cr,

www.manaraa.com

Table 10 (continued) 129

□perat ion Change_Link(Link_Name : ch_string)

Reouire [Dom_of(Link_Name_of(Link_Name)) =

Category_of (Component_of (#Cr)) or,

CoDom_of(Link_Name_of<Link_Name)) =

Category_of(Component_of(# C r))] and

C Source_of (L i nk_Name) = #Cr or_

Target_of(Link_Name) = #Cr 3

Ensure Source_of(Link_Name) = Me

iff Target_of(Link_Name) = #Cr and

Target_of(Link_Name> = Me

iff Source_of(Link_Name) = #Cr

Description The Change Link operator sets the source or

target (whichever points to the current Entry) of the

link named Link_Name to the new entry pointed by the

Entry Mark, Me.

□oerat ion Follow_Link(Link_Name : ch_string)

Require Source_of (Link_Name) = #Cr ojr

Target_of (L i nk_l\lame) = #Cr

Ensure Cr = Target_of(Link_Name)

iff Source_of(Link_Name) = #Cr and

Cr = Source_of(Link_Name)

iff Target_of(Link_Name) = #Cr

Descr iotion The Follow Link operator moves the cursor to

the entry pointed to by the source or target

www.manaraa.com

Table 10 (continued) 130

(whichever points to the current Entry) of the link

named Link_Name.

□perat ion Move_Entry

Require Me ^ -L and

Category_of(Component_of(M e)) =

Category_of(Component_of(#Cr))

Ensure Component_of(Me) = Component_of(#Cr) and

For all e : E >

Me iff #Next_Entry(e) =
#Next_Entry(#Cr)

Next_Entry(M e) iff #Next_Entry(e > =
1 #Next_Entry(Me)

Next_Entry(e) =(
' #Next_Entry(#Cr) iff #Next_Entry(e)

Me

■#Next_Entry(e> otherwise

Descr ipt ion The Move Entry operator moves the marked Entry

from its current place to a place following the Entry

pointed to by the cursor C r *

Operation Next_Component

Require #Cr J- and

Next_Category (Category_of (Ccmponent_of (#Cr) >) =J= i-

Ensure There exists an e: E, such that Cr = e iff

Next_Category(Category_of<Component_of(#Cr)) =

Category_of(Component_of(e)) and

For all f: E, Next_Entry (f) e

www.manaraa.com

Table 10 (continued) 131

Descr iot ion The Next Component operator sets the

cursor to the next Component in the Unit

unless the cursor is pointing to an Entry of

the first Component.

□perat ion Prev_Component

Requ ire #Cr =|= J_ and

F i r st_CCat (C 1 ass_of (Un i t_of (Component_of (#Cr)))) =j=

Category_of(Component_of(#Cr))

Ensure There exists an e: E such that, Cr = e iff

Next_Category(Category_of(Component_of(e))) =

Category_of(Component_of(#Cr)) and

For all f: E, Nex t_Entry (f) e

Descr ipt ion The Previous Component operator sets the

cursor to the first Entry in the preceding Component

in the Unit if the cursor is not already set to the

first Component in the Unit.

□perat ion Next_Entry

Require Next EntrvttCr) =|= X-

Ensure Cr = Next_Entry<#Cr)

Descr ipt ion The Next Entry operator sets the cursor to the

next entry in the component,

www.manaraa.com

Table 10 (continued) 1 3 2

Openat ion Prev_Entry

Require #Cr =j= ±- and

There exists an e: E, such that Next_Entry(e) =

#Cr

Ensure For all e: E, Cr = e iff Next_Entry(e > = #Cr

Descr ipt ion The Previous Entry operator sets the cursor to

the preceding Entry in the Component if the cursor is

not already set to the first Entry.

Operation Visit_Refinement

Require Ref inement_of (#Cr) =j= J-

Ensure There exists an e: E, such that Cr = e iff

F i rst_CCat(Class_of(Refinement_of(#C r))) =

Category_of(Component_of(e))

Descr ipt ion The Visit Refinement operator sets the cursor

to point to the first Entry in the Unit which is the

refinement of the Entry which the cursor is currently

pointing at,

The first time a method is used for a new piece of

software, a Unit from the Initial Unit Class (the Initial

Unit) is created. The cursor is set to the first Entry

within the Unit. From the Initial Unit, all of the other

Units are created. A Unit can only be created from an Entry

in a Component with a valid reference to a Unit Class, which

www.manaraa.com

133

is a refinable Component Category. The process of creating

a Unit also creates Entries and Components for all Component

Categories belonging to the unit class.

Deletion of a Unit is accomplished by reversing the

process of creating instances. Units are deleted by

positioning the cursor to the Entry that refines to the Unit

to be deleted. The Refinement Link is removed and the Entry

is returned to its original state (before it was refined).

If the removed Refinement Link was the only one to the Unit

and there are no Secondary Links between Entries in the Unit

to be deleted and Entries in other Units, then the Unit is

destroyed. If another Refinement Link refers to the Unit to

be deleted, then only the link from the Entry from which the

deletion was initiated is deleted. The link from the

referenced Unit to the Entry is removed and the Unit is left

intact. If the Unit to be deleted has no additional

Refinement Links from other Entries, but does have Secondary

Links referencing it, then the deletion is not permitted

until the method user explicitly removes the Secondary

Links. The same sequence of events is applied to every Unit

that is referenced (either by Refinement Links or by

Secondary Links) by a Unit to be deleted. The delete

operator must not ruin the integrity of the Refinement Links

by removing a Unit that is refined to by another Entry.

www.manaraa.com

13A

The Replicate Entry operator creates another Entry in a

Component. The Delete_Replicate operator removes a

replicated Entry from the Component providing the Entry is

not currently refined to another Unit.

The Change Attribute Value operator allows the software

engineer to maintain the values of the Attributes. This

operator implies the use of a text editor to change the long

strings of text that may be stored in an Attribute. The

actual form of the text editor is left to the implementor,

but the editor should have the operators to add, delete,

change and search text, in addition to operators for moving

through the text based on characters, words sentences and

paragraphs.

The Change Link operator allows the source or target of

Secondary Links to be changed. Secondary Links are Entry to

Entry links, except when the links are between the first

Entries of Units, then the links are essentially Unit to

Unit links. These links provide the method definer with the

means to connect entire Units together with a single link

type.

During method application it is possible for the user

to move entries from one position in a Component to another

position in the same or different Components. Both

Components (source and target) must be of the same Category.

www.manaraa.com

135

If the Entry being moved has references to other Units by

way of links (either Refinement or Secondary), the

references are left intact, thus, this operation has the

effect of altering the network of the Units. This operation

is essentially a combined Delete Entry and Replicate Entry

operator, because the links are removed from the source Unit

and moved to the target Entry.

A query package provides a general purpose capability

for searching the structure and contents of the TRIAD model.

It is not necessarily a single operator, but several. It

should search for Unit, Entry and Attribute Names as well as

the Attribute Values. This query capability should be as

robust as those found with database management systems.

The use of a method often suggests changes in the

method definition. Some changes are subtle and only involve

a name change for a unit or entry, while others may create

new units and delete existing ones. The process of changing

a method that has already been applied is called "Tuning".

3.3 TUNING A METHOD

Tuning can be of two types— local or global. Local

tuning involves changing the structure and not the content

of a Unit. Local tuning is restricted to changing the names

www.manaraa.com

136

of Entries> adding or deleting Attributes and adding or

deleting Secondary Links. The changes are only applicable

to the Unit being tuned. All other Units of the same Unit

Class are unaffected, hence the reason for the name local

tuning. Additional Component Categories can be added during

local tuning, however, changes in the structure of the Unit

Class often means a weakness in the software engineering

method definition. Structural changes are best made as

global tuning actions to keep the Units consistent with the

Unit Classes.

Global tuning involves changing the Unit Classes in the

same manner as when the method was first defined. However,

since the method has already been partially applied, all

changes must applied to each Unit of the same Class to keep

future Units consistent with existing Units. The same

checks that were made for the Delete Unit operator are also

made during global tuning when a refinable Entry is removed

or a Unit Class is deleted.

Although global tuning by default affects the entire

collection of Units, it is sometimes desirable to globally

tune only a subset of the Units. Global tuning of a subset

causes a consistency problem if any Unit Class has Units

included and excluded from the subset. After the global

tuning of such a Unit Class is complete and when the next

www.manaraa.com

instance of the Unit is made the new globally tuned version

is used. The result of this tuning is the elimination of

the excluded Unit Class. This problem is overcome by

changing all Entries refining to the unit to specify more

than one Unit Class to refine to. Then the Entry can be

refined to either the original Unit (excluded from the

subset) or the new Unit changed through global tuning

(included in the subset). In the Call Structure example,

the Unit class is "MODULE". After a Call Structure is

defined using this software engineering method, suppose that

the program represented is greatly expanded and new modules

coded in a different programming language are added. In

this case the method designer wants to change the "MODULE"

unit to add new Entries specific to the programming language

used to implement the module. Rather than creating one Unit

Class with language specific Entries, different Unit Classes

are created for each language and the Entry refining to the

"MODULE" Unit must refine to a particular type of "MODULE"

such as CMOD, FORTMOD, PLIMOD etc.

www.manaraa.com

3.4 TRIAD PROCEDURES

Additional features of the TRIAD model can be expanded

from the basics defined above. Most of these features are

achieved through the implementation. One such feature)

Procedures, is very basic to the use of the TRIAD model for

representing software engineering methods. The TRIAD model

supports the definition of the references to Procedures, but

the actual construction of the Procedures is left to the

Method Designer. They are built from whatever languages and

compilers are available in the implementation of the model.

A Procedure is written in a programming language. The

Procedure is used by the method designer to express the

procedural aspects of using a method. For example, rules

for the use of a method can be implemented using a

Procedure. Procedures can also be used as tool interfaces

and to implement extended commands. Operators are provided

for the Procedure to manipulate and process the information

stored in the methods defined using the TRIAD Model.

Procedures are invoked based on access to an Entry where the

Procedures reference is attached. When an Entry is

accessed, the Procedure invocation rules, which are stored

as Attributes of the Entry, are checked and only those

Procedures satisfying a two component rule get invoked. The

www.manaraa.com

139

■first component of the rule is the invoking agent) which is

either the user (by way of a direct command)* an extended

command or another Procedure. In the latter two cases* the

name of the extended command or Procedure must match the

invoking agent name. The second component of the invoking

criteria is the entry/unit status. The following 5 status

are possible:

o Create,

o Delete*

o Enter *

o Exit and

o Modify.

These states correspond to user access actions, thus

one Procedure can be invoked when the user enters (applies

the Next function to change the cursor) an Entry and another

one when the user exits the Entry.

For instance* the display of the entry may cause a

Procedure to be invoked which will dynamically count the

lines of code contained in an adjacent Entry containing the

program source code. In this example* the invocation

criteria is the display of the form. Other criteria can

include removing the Entry from display, modifying the entry

text or access of the Entry by a tool.

www.manaraa.com

140

Procedures use implementation provided operators to do

processing in the Units* but are prohibited from altering

the structure of the Units (delete Units or changing links).

This restriction eliminates the possibility of deadlock

situations caused by indirect invocation of one Procedure by

another Procedure.

3.5 USER VIEW OF THE TRIAD MODEL

Although the definition of the TRIAD model is in terms

of sets, functions and relations, the software engineer

using the TRIAD model sees it differently. Although the

user interface is dependent on the implementation of the

model, a rudimentary description here of the user view of

the model will facilitate the discussion of the application

of the model to software engineering methods. Figure 11

shows the basic structure of the user view of the TRIAD

model, which is a Unit Class containing a refinable and

non-refinable component categories.

www.manaraa.com

1^1

Attr ibutes:
Links:
Procedures name and rules:
Un i t Name | | Unit Number

Attr ibutes:
Links:
Procedures name and rules:
Entry Name J | Refinement Link

Attr ibutes:
Links:
Procedures name and rules:
Entry Name | (TEXT)

1

Figure 1 1 . User View of the TRIAD Model

The visible parts of the unit are the box surrounding

the Unit, the vertical lines separating the Entries and the

Entry Names or tags (printed in dark type). Located above

each Entry in the Unit are the Attributes. The Secondary

Links and Procedure References are special types of

Attributes, but are show here to emphasize their value to

method definition and use.

Note that the user view parallels the model in that the

groups of Attributes are clustered together into Component

Categories represented by the boxes surrounding them. All

www.manaraa.com

1^5

the Categories are surrounded by a frame which represents

the Unit Class.

3.6 USING THE TRIAD MODEL TO REPRESENT A METHOD

The Call Structure example in Figure 6 from Chapter II

is used to illustrate the TRIAD model. First the Call

Structure method will be defined using the method definition

elements of the TRIAD model. Next, the method definition

will be used to apply the method to the name and address

file maintenance example.

To represent the Call Structure of a group of

subroutines or modules, a Unit Class called "MODULE" is

created. "MODULE" has an Attribute associated with it which

contains the name of the module. Two Component Categories

are contained in the "MODULE" Unit Class. The first is the

Component Category "PROGRAMMER" which records the name of

the programmer responsible for the module. "PARAMETERS" is

the next Component Category. It contains the names and type

of the parameters required for the module which are

contained in attributes associated with the entry. This

Component Category is capable of being replicated, which

allows more than one parameter to be specified for each

module. The next Component Category is "SOURCE", for the

www.manaraa.com

1^3

source code of the module. An Attribute which is of type

text, contains the actual source code. Following the

"SOURCE" Component Category is the "CALLS" category.

"CALLS" is refinable to the "MODULE" Unit Class. An

Attribute containing the name of the module being called is

associated with "CALLS". Since this example has only one

Unit Class, "MODULE" is the Initial Unit Class, also.

The outline below summarizes this example method definition.

Unit Class: MODULE

Attribute: (name_of_module;ch_strings)

Component Category: PROGRAMMER

Attribute: (n a m e ;ch_string>

Component Category: PARAMETERS

Attribute: <r e p 1icab 1e ;integer>

Attribute: < parameter_name;ch_string>

Attribute: (parameter_ type|ch_string)

Component Category: SOURCE

Attribute: (source_code;text)

Component Category: CALLS (refines_to;MODULE)

Attribute: (name_of_called_module;ch_string)

www.manaraa.com

The user view of the Call Structure method is shown in

Figure IS.

Module j | Unit Number

Programmer j

Parameters (MORE?) j

Source Code j

Calls (MORE?) | j Unit Number

Figure 12. Module unit

Applying this method to the Call Structure example in

Chapter II produces the network of units shown in Figure 13.

www.manaraa.com

1A5

Module | Main J Unit 1

Programmer | John Smith

Parameters (More?) |

Source Code I
PROGRAM MAIN;
END.

Calls (More?) j Edit | 2

Calls (More?) j Update j 3

Calls (More?) | Report |

Module | Report | Unit A Module | Edit | Unit 2

Programmer | John Smi th Programmer | Bob Jones

Parameters (More?) j Parameters (More?) |

Source Code | Source Code |

Calls (More?) | CalIs (More?) |
I

1
Module | Update | Unit 3

Programmer I Emily Ni tmore

Parameters (More?) j

Source Code |

Calls (More?) |

Figure 13. Instantiated TRIAD Model Units

www.manaraa.com

1^6

CHAPTER IV

ALTERNATIVE MODELS

The development of a model to represent software

engineering methods draws from several areas of computer

science research. Some methods have a rigid structure and

share many properties in common with programming languages.

In addition* those methods that are primarily textual

require a sophisticated text editor to apply and maintain

the text contained in the method. Both of these features

indicate that grammars and the related syntax directed

editors are appropriate to represent some software

engineering methods.

The assistance a software engineer receives from a

computer based method is largely due to the storage and

retrieval of the information organized by the method. Data

models are useful for representing methods and databases are

extremely beneficial for the actual storage and retrieval of

the information.

In the future* artificial intelligence (AI) research

will contribute much to the techniques for applying expert

programmer knowledge to software engineering problems. The

research done in AI on knowledge representation is essential

1 ^ 6

www.manaraa.com

1^7

to ultimately represent expert programmer knowledge. Until

expert programming knowledge can be captured and used,

research on knowledge representation can be practically

applied to assist the software engineer in developing

software.

Although the TRIAD Model was constructed by examining

the research contributions of these three areas, not one of

the three provides a single model strong enough on its own

to support methods description and application. However,

the combination of elements from these three areas embodied

in the TRIAD model does provide a superior model.

*+.1 GRAMMAR FORM

Soni, Kuo and McKnight have developed the Grammar Form

Model for the representation of methods based on attribute

grammars CS0NI83, KU083, MCKN85D. The method is specified

by writing production rules for a grammar which will accept

the method. An attribute grammar is a quadruple

G=(G o , A g , A, sem) where

o G 0 =<V,9,P,cr) is a grammar,

o A ra is a specification of attributes,

o A is an attribute associator for G and A ra and

o sem is a semantic function association for productions

in G such that sem(p) is a valid collection of semantic

www.manaraa.com

i^a

functions for p in P.

www.manaraa.com

In_Production

Vocabulary In_PseudoProduction Productions

.ttribute_ol

Semantic
Functions Attribute

Type Names,

Figure 14. Grammar Form Model

www.manaraa.com

150

The method definition portion of the Grammar Form Model

is shown in Figure The three circles represent < left to

right) the Vocabulary (G)> the Productions (P), the set of

semantic functions and the spec ificat ion of Attributes (A).

The relation between the Attributes and the Vocabulary is

the attribute associator (A (3). The function

Semantic_Function_of maps the semantic functions to the

symbols. The relation In_Production_of relates the symbols

in the Vocabulary (V) to Productions (P). The relation

In_PseudoProduction_of relates some of the Non-terminal

symbols in the Vocabulary (V) to pseudo productions which

define the form view of the method. These productions are

of the form S->S’.

The method is defined in the Grammar Form Model by

describing a grammar. The Component Categories correspond to

the symbols. The method definer writes productions to

represent the structure of the symbols. For example, the

call structure example in Chapter III can be represented in

the Grammar Form Model as follows:

V = {Programmer Parameters Source Module!

P = {Module -> Programmer, Parameters, Source, Module!

In this example Module on the right hand side of the

production represents the "CALLS" Entry. Module has a dual

role, it is both a left hand side symbol and a right hand

side symbol. As a right hand side symbol it represents a

symbol belonging to the production and as a left hand side

www.manaraa.com

151

symbol it represents a refinement to a new production. This

ambiguity is resolved by introducing a pseudo production,

Module’ -> Module. Now the productions for the call

structure example are:

Module -> Programmer Parameters Source Module’

Module’ -> Module.

The attributes and semantic functions are equivalent in

both models and will not be expanded in this example. The

method use is not represented in Figure l̂ t because the

Grammar Form Model defines a grammar, which is merely used

to generate correct sequences in the "language" (method

definition). The use of the method is therefore the

application of the grammar generated by the method

def ini t ion.

Two major deficiencies of the Grammar Form Model as

opposed to the TRIAD Model are readily apparent. The first

is that the Grammar Form Model does not explicitly support

links between productions and symbols as the TRIAD Model

does with the entry category links. However, links can be

simulated in the Grammar Form Model by storing the path from

one symbol to another symbol as an attribute. This

technique requires additional storage (the sum of the path

lengths to the common parent production) and additional

computation to locate the ends of the links. The TRIAD

Model stores the location of the link source and target and

can access the entries directly in one operation. Although

www.manaraa.com

15a

this deficiency can be overcome through a clever

implementation, the method definer has a more difficult time

conceptualizing Secondary Links with the Grammar Form model

then with the TRIAD model. The difficulty in

conceptualizing may affect the quality or the range of

software engineering methods that may be represented.

Secondly, the Grammar Form Model produces a tree

representation of the method and therefore cannot represent

graphical methods such as Dataflow Diagrams and the call

structure method. On the other hand, the TRIAD M o d e l ’s

Refinement Linkages can represent directed graphs and the

Secondary Links achieve network representations.

Table 11 compares the method definition of the TRIAD

Model to the Grammar Form Model.

Table 11. Comparison of TRIAD and Grammar Form Models

TRIAD Model Grammar Form Model

Component Categories (CCat) Vocabulary <V>

Attribute Names (AN) Specification of
Attributes (A)

Unit Classes Productions (P)

Next_CCat Next_Symbol

www.manaraa.com

Table 11 (continued) 153

Cat Refines to In PseudoProduction of

Unit for In Production of

Is Attr of Cat Attribute Associator (A a
Is_At tr_of_Class

The spec ification of a method is a different process

using the Grammar Form Model than that of the TRIAD Model.

The method definer is specifying a grammar and must define

the sets constituting the grammar. McKnight describes the

following steps in method specification CMCKN85I:

o Define Symbol Set - The vocabulary and start symbol,

o Define Production Rule Set - the relations between the

symbo1s ,

o Define Attribute Set - the attributes associated with

the symbols,

o Define Action Set - the semantic functions associated

with the productions,

o Define Blank form Set - the mapping to the method user’s

view of the method,

o Compile Method Description - Check the consistency of

the sets defined above and create a grammar to use the

defined method.

www.manaraa.com

The following operators are available in the Grammar

rm Model to define a method:

Create_A_Method(Method_name, Start_Symbol : ch_string>

creates a new method called Method_Name with the start

symbol named Start_Symbol,

Delete_A_Method(Method_Name : ch_string) deletes the

method named Method_Name,

Add_A_Symbo1(Symbo1_Name : ch_string) adds the symbol

named Symbol_Name to the symbol set,

Delete_A_Symbo1(Symbol_Name : ch_string) removes the

symbol named Symbol_Name from the symbol set,

Does_The_Symbo1_Exist(Symbol_Name : ch_string> checks

the symbol set to see if the symbol named Symbol_Name

ex i sts,

Add_A_Production(Production_Name : ch_string) adds the

production named Production_Name to the production set,

Delete_A_Production(Production_Name : ch_string> removes

the production named Production_Name from the production

se t ,

Add_To_A_Form(Form_Name, Production_Name : ch_string>

adds the production named Production_Name to the form

named Form_Name,

Delete_From_A_Form(Form_Name, Production_Name :

ch_string) deletes the production named Production_Name

from the form named Form_Name,

www.manaraa.com

155

o Add_An_Attribute(Symbo1_Name, Attribute_Name,

Attribute_Type : ch_string) adds the attribute of type

Attribute_Type and named Attribute_Name to the symbol

named Symbol_Name,

o Delete_An_Attribute(Symbo1_Name, Attribute_Name :

ch_string) removes the attribute named Attribute_Name

from the symbol named Symbol_Name,

o Does_The_Attribute_Exist(Symbo1_Name, Attribute_Name :

ch_string) checks the symbol named Symbol_Name to see if

the attribute named Attribute_Name exists,

o Add_A_Semantic_Function(Function_Name, Production_Name :

ch_string> adds the semantic function named

Function_Name to the production named Production_Name

and

o Delete_A_Semant ic_Func t ion(Func t ion_Namei

Production_Name : ch_string) removes the semantic

function named Function_Name from the production named

Product ion_Name.

The method use operators for the Grammar Form Model are

defined as follows:

o Create_Form_Tree(Tree_Name) creates a new form tree with

name, Tree_Name>

o Starting_Form_Tree(Form_Name) starts the form tree with

the blank form named Form_Name,

www.manaraa.com

156

Delete_Form_Tree(Tree_Name) removes the form tree named

Tree_Name,

Refine(Entry_Name,Form_Name) refines the entry named

Entry_Name to the form named Form_Name,

Choice(Entry_Name) select the entry named Entry_Name

from a set of alternate entries <product ions),

More(Entry_Name,n) make n copies of the entry named

Entry_Name,

Delete_Entry (Entry_l\lame) delete the entry named

Entry_Name,

Next_B1ankEntry(Entry_Name) find the next unfilled entry

named Entry_Name,

Next_Entry(Entry_Name) find the next entry named

Entry_Name,

Next_Unrefined_Entry(Entry_Name) find the next unrefined

entry named Entry_Name,

Visit_Form(Form_Number) visits the form with number

Form_Number and

Child_Form<Entry_Name,Form_Number) visits the form with

number Form_Number which is refined to from entry named

Entry_Name,

Parent_Form(Form_Number) visits the parent form with

number Form_Number and

Search_for_... includes several special operators which

search for occurrences of symbols, attributes and text

occurring within entries and forms.

www.manaraa.com

157

Table 12 compares the method definition operators of the

TRIAD Model to the Grammar Form Model.

www.manaraa.com

Table IS. Comparison of Method Definition Operators

TRIAD Model Grammar Form Model

Create_Method

Delete_Method

Add_Uni t

De1ete_Uni t

Add_Entry and
Add_Refinable_Entry

Delete_Entry

Query

Add_Attribute

Delete_Attr ibute

Add_L i nk_Name

D e 1ete_L i nk_Name

Next_CCat and
Previous CCat

Create_A_Method

D e 1ete_A_Method

Add_To_A_Form

D e 1ete_From_A_Form

Add_A_Symbol>Add_A_Production

D e 1ete_A_Symbo1,Delete_A_Produc t i on

Search_for

Add_An_Attr ibute,
Add_A_Semant ic_Funct ion

Delete_An_Attr ibute,
Delete A Semantic Function

Does_The_Symbo1_Ex i st

www.manaraa.com

159

Although the Grammar Form Model and the TRIAD Model

method definition operators appear to be very similar, there

are several major differences. The first major difference is

the lack of secondary links in the Grammar Form Model. The

organization of the symbols is by way of the parse tree and

access to all symbols is done by navigating through the

tree.

The second major difference is the process of defining

the method. The Grammar Form Model requires the method

definer to define the set of symbols and then the set of

productions which structure the symbols into a method. The

fifth row in Table 12 has two operators for the TRIAD Model

and two for the Grammar Form Model. However, the two TRIAD

operators differentiate between the two types of Component

Categories, refinable and non-refinable, but perform the

same task that of adding an Component Category to a unit

class. On the other hand, the two Grammar Form Model

operators perform separate operations. The first adds a

symbol to the symbol set and the second adds a production to

the production set. Thus the Grammar Form Model requires

two operators to define an entry in the model, which is done

with a single operation (choice of two operators based on

the type of entry) in the TRIAD Model.

www.manaraa.com

160

Tying the Grammar Form Model productions to the form

view is a third major difference between the two models.

The TRIAD Model has a uniform representation for both the

method definition and use* while the Grammar Form Model uses

a grammar to represent the method and a form based interface

to use the method. The Add_To_Form operator associates a

production with a blank form name. All productions are tied

to forms on the basis of the derivation tree. The form

assignment is made for a production and all productions

derived from the production with the form specified are tied

to the same form until another form assignment is found.

Although the TRIAD Model Add_Unit is some what equivalent to

the Add_To_A_Form operator of the Grammar Form Model, the

Add_Unit operator is used to create a Unit Class. All

subsequently defined Component Categories are members of

that Unit Class which is referenced by the cursor. The

Grammar Form Model uses the Add_To_A_Form operator after all

of the productions are defined.

Finally the method definer has operators in the Grammar

Form Model to search the sets of symbols* attributes and

productions, which are unnecessary in the TRIAD Model. When

a method is defined in the TRIAD Model, the method definer

has all of the information needed to define the Unit Classes

and the Component Categories. In the Grammar Form Model,

the method definer has to build the sets, independently or

constantly change between the sets if an incremental

www.manaraa.com

1 6 1

approach is used. Even after the symbols are defined and

the productions written) the mapping to the form view is yet

another disjoint operation.

Table 13 compares the method use operators of the TRIAD

Model to the Grammar Form Model.

www.manaraa.com

162

Table 13. Comparison of Method Use Operators

TRIAD Model Grammar Form Model

Use_Method Create_Fornr,_Tree , Star t i ng_Form_Tree

Delete_Method_Use Delete_Form_T ree

Create_Unit and Refine Refine, Choice

Delete_Unit Delete_Form

Replicate More

Delete_Rep1icate Delete_Entry

Change_At tr_Value

Create_L i n k ,
Delete_Link and
F o 11ow_L ink

Mark_Entry and Move_Entry

Next_Entry Next_Blank_Entry, Next_Drganizer and
Nex t_Unref i ned_Organi zer

Visit_Unit Visit_Form

Visit_Child_Unit Child_Form

Visit_Parent_Unit Parent_Form

Query Search_For

www.manaraa.com

1 6 3

The method use operators between the two models are

very similar. Again, the absence of secondary links in the

Grammar Form Model means that the link operators are present

for the TRIAD Model only. The Grammar Form Model has more

specific navigation operators then the TRIAD Model. However,

this is only a convenience factor and the same more specific

operators could be constructed for the TRIAD Model by

combining the Next_Entry functions and the query operator.

The TRIAD Model because of its ability to represent

graphs, has two separate operators for refinement. The

Create_Unit operator creates a new Unit from the refinable

Entry and also completes the Refinement Link between the

Entry and the new Unit. The Refine operator is used to

refine a refinable Entry to a Unit that already exists. In

this case, the operator completes the link from the Entry to

the specified Unit.

The following is a list of the major advantages of the

TRIAD Model over the Grammar Form Model for providing a

precise model which best represents software engineering

methods.

o Representation

Directed graphs can be represented using the

Refinement Linkages in the TRIAD Model whereas only

trees can be directly represented in the Grammar

Form Model

- The TRIAD Model supports Secondary Links from Entry

www.manaraa.com

1 6 <+

to Entry thereby allowing the capability to

represent networks. The Grammar Form Model does not

have secondary links.

- The Grammar Form Model is best for representing

language based methods while the TRIAD Model is

appropriate for language type methods and other,

less structured methods.

- The TRIAD Model has a uniform view of method

definition and use, while the Grammar Form Model

uses a grammar for method definition and a form

- The TRIAD Model is more natural for expressing

methods than the grammar approach. The software

engineering can express the method definition in a

representation as close to the method as possible.

No translation to a grammar is necessary.

o The TRIAD Model uses a direct manipulation, incremental

approach to specifying and using a method, while the

Grammar Form Model requires the method to be defined as

a grammar, in disjoint sets,

o The use of grammars to specify a method is different

from the classic use of grammars as recognizers of

sentences in a language. The grammar form is used as a

generator of grammars. The generated grammar being the

method specificat ion.

www.manaraa.com

165

A .2 DATABASE MODELS

The definition of a software engineering environment

has three components, an editor, interface and storage

facility. The obvious comparison of a software engineering

environment to a database is natural. Classical database

model implementations— hierarchy, network and

relational— are oriented towards transaction based

processing of fixed format fields. Little support for large

blocks of unparsed text is provided, particularly for

editing or searching CKENT79]. Therefore, the availability

of a database implementation to use directly without

modification for method support is not possible. The

hierarchical model, like the grammar form is unsuitable for

method specification because of the difficulty in

representing directed graphs. Although the relational model

contains the expressive power to represent any structure

including directed graphs, it is difficult to capture the

semantics of the method stored in the relations. The

creation of data dictionaries and the Entity-Relationship

and Semantic Data Model are solutions to the need to

represent not only the structure of the data, but the

meaning of the structure.

www.manaraa.com

166

The semantics of data refers to the meaning of the

structure. Databases have a model for structuring data? a

query language for retrieving data from the structure and a

procedural language for writing extended commands and

programs to access the database. Each one of these features

is separate. The software engineering environment needs

processing embedded within the structure of the data

(method). By embedding the processing within the method,

processing can be defined for classes of data, which will be

available for all instances of the class when the method is

used. Processing which is invoked based on data access,

enables the environment to offer assistance to the software

engineer applying the method. This assistance would have to

be provided for each method by the person defining the

method. This is a different approach then that of writing a

single database program to control the user’s interactions

with the database. It is a local approach that attaches the

procedure references to the data, causing the interaction to

be triggered by access.

Although the relational data model could be used to

build a software engineering method representation, the

TRIAD Model captures the essence of software engineering

methods structure as atomic features. Further the TRIAD

Model provides support for incorporating the knowledge to

apply the methods with the structure, something the

classical models do not provide.

www.manaraa.com

167

The Entity-Relationship Model <E-R> proposed by Chen

attempts to capture the meaning of data by naming the

relations and the entities CCHEN763. The model is intended

to be built upon the relational model and used by the

Database Administrator at a cognitive level for describing

the data. The E-R model is naturally intended to be a

general model for the universe of database app1ications.

The goal in creating the TRIAD Model is to build a

specialized model capable of capturing the distinct software

engineering method support requirements. Although the E-R

model, like the relational model, has the expressive power

to represent methods, it lacks the method specific features

of the TRIAD Model.

The specification of the relationships in the E-R Model

are also present in the Secondary Links of the TRIAD Model.

The Secondary Links are named at method definition time by

the method specifier. The primary links (refinement) are

already specified as ownership links.

Several new data models have been proposed CBRODB^t,

TSIC823. These new models allow the database administrator

to create new data types that contain predefined

restrictions, attributes, processing functions and

relationships to other types. The classical data models

merely organized the data without explicitly allowing the

database user to use the schema other than to specify the

record and field names. In fact, the creation of a separate

www.manaraa.com

168

data dictionary by several commercial database

implementations to help the user organize and remember the

many record and field names, illustrates this void in the

classical data models.

A final problem exists with most database

implementations. The data definition is analogous to the

model definition in the TRIAD Model, however; the method

definition can be interactively changed by tuning the

method. Most database implementations require the data

definition to be recompiled and the data translated to the

new structure. Both of these operations are usually done in

batch mode. To use a database as an implementation vehicle,

it must support dynamic changes to the data definition and

be capable of allowing embedded procedure references with

the data.

The most promising (and most complicated) new data

model is the semantic data model <S D M) which combines the

schema and data into a network CHAMM81]. Although the SDM

is appropriate for method definition, it is complicated and

difficult to use. SDM is a much more general model for data

representation, while the TRIAD model is focused on

representing and supporting methods.

www.manaraa.com

169

4.3 KNOWLEDGE REPRESENTATION FRAMES

Some software engineering methods are a first attempt

at applying artificial intelligence (AI) techniques to

software construction. Although most methods do not

automatica11y produce programs as an expert system would,

they are attempts at recording representations and the

knowledge of expert programmers in terms of the techniques

used to produce software. It is natural then that knowledge

representation ideas should be applied to software

engineering methods. A prominent knowledge representation

scheme is the AI frame CMINS75]. The frame was proposed as

a model for use in computer vision, but since has been

expanded and applied to the representation of knowledge for

deduction as well as recognition. Basically a frame

represents a stereotype of a concept. It has fixed items

which are always present and slots for specific

information— instances of the concept. Thus, the frame

serves as a combined schema and storage cell. Demons are

also associated with the frame and are used to represent

procedural knowledge. Further, frames, may be connected

together into a network of frames, thereby representing a

body of knowledge.

www.manaraa.com

170

Although there are many similarities between AI frames

and the TRIAD Unit* there are several important differences.

The first major difference is one of purpose. AI frames are

used to not only represent knowledge* but also to support

the recognition of the concepts represented. The first

application of AI frames was to vision and natural language

recognition. Their use was extended to not only recognize,

but also show the path through the frames, thereby*

demonstrating the reasoning used to recognize a concept.

The use of demons is different from that of TRIAD

Procedures. The demons are used in the AI frame as

recognizers and fire automatically once a concept is

presented for recognition. The Procedures attached to the

TRIAD Entries are invoked in a more orderly fashion, often

as the result of the user moving the cursor on the display

terminal. For example, the AI frame demons may all fire and

try to recognize a concept, whereas the TRIAD Procedure may

only be invoked if the software designer displays the

representation for a module on the terminal screen.

To support current software engineering methods, less

automatic reasoning is required. The TRIAD Unit is used

more as a storage entity, letting the software engineer do

the reasoning. Thus, the structure of the TRIAD Unit Class

is borrowed from AI, but the application is different.

www.manaraa.com

CHAPTER V

SUPPORT FEATURES OF THE TRIAD MODEL FOR

SOFTWARE ENGINEERING METHODS

The TRIAD Model was designed to support the definition

and use of software engineering methods. This chapter

describes how the requirements for a model for software

engineering methods, which were described in Chapter II, are

met by the TRIAD model. The last section describes how the

features of the TRIAD Model support multiple software

engineering methods.

Four basic requirements were given in Chapter II for a

model to represent software engineering methods. They are:

o Represent the method structure,

o Encapsulate the meaning of the structure,

o Provide the capability for expressing the rules and

procedures of the method use and

o The model must be capable of being easily implemented on

a computer so that computer based support can be

supplied to these methods.

The ability of the TRIAD model to represent the

structure of software engineering methods was informally and

formally given in Chapter III. The next section describes

171

www.manaraa.com

1 7 2

those features along with some extensions derived from the

model which better support the method structure.

The next requirement, that of capturing the meaning of

the method structure, is accomplished in the TRIAD model by

the Method Definition Component. The Method Definition is

not only a flexible device for expressing software

engineering methods using a general model, but it is also

retained through Method Use as a reference and recording of

the method definition. The structural features of the model

entities are named, which includes the Component Categories,

Unit Classes, Attributes, Links and Procedures. These names

can be used both by the method definer and method user to

gain insight into the meaning of the method structure. The

names can be used in the query language, to extract

relationships between method objects. Further, the

Procedures can be created to analyze the method structure

and make the meaning clear. For example, the Call Structure

Diagrams (and other hierarchical methods) use the position

of the boxes within the diagram to not only represent calls,

but also scope and successor and predecessor relationships.

Procedures can be written to capture the meaning of the

position generally in the method definition, then at method

use, the Procedure can show the relationship of the actual

instances of the software within the Call Structure

h ierarchy.

www.manaraa.com

173

The third general requirement, that of a facility for

expressing the rules of the method is captured in the

Procedures. Finally, the general implementation

requirements are discussed in a later section.

5.1 REQUIRED METHOD STRUCTURE SUPPORT FEATURES

The TRIAD Model supports the representation of the

structure of software engineering methods as follows:

o The Unit Class provides "chunking" of method concepts

and the tags of the Classes provide names for the

software engineer to use,

o Refinement links allow trees, hierarchies and graph

based methods to be represented,

o The Attribute provides storage for both long text

strings and variables describing the method concepts,

o Procedures to express method dependent knowledge based

on the conceptual chunks of the method. Further, the

procedures are invoked based on criteria such as access

mode and type of entity requesting access (software

engineer, tool, etc.) which are specified by the method

def i ner.

o A query language on Unit Classes, Components, tags,

Attributes and Links allows fast access to stored text

and fixed format data,

www.manaraa.com

17A-

o Links to other units model secondary conceptual

r e 1 at i onsh i p s ,

5.1.1 CHUNKING OF CONCEPTS

The partitioning of a method into conceptual chunks is

a natural way to subdivide a large number of entities. The

Unit Class is used to represent a concept in a software^

engineering method. The Component Categories within a Unit

Class serve to subdivide the concept into related pieces.

Thus, the TRIAD Model initially provides a two level

approach to the organization of concepts in a method.

Further levels of detail can be introduced by the use of the

Secondary Links.

Since many methods are representationali the TRIAD

Model, facilitates the expression of these methods. Each

Unit Class is a representational unit, say a box in SADT or

a bubble in Dataflow Diagrams. Within the Class, the

Component Categories describe the entities of the method.

In the case of SADT, this includes the input, output,

mechanism and control arrows and the descriptions of the

boxes.

www.manaraa.com

175

Even if the software engineering method is not

representational, but procedural in nature, the TRIAD Model

is still effective for expressing the method. Steps in the

procedural method may be chunked together into one class,

representing a task within the method. The key idea is to

partition the method into workable and manageable entities.

Software engineering methods which are used to merely

organize textual descriptions of software can be easily

defined using the TRIAD Model. The Categories within a Unit

Class are used to subdivide sections of the text. For

example, one or more Unit Classes could be used to represent

the documentation of a program. The Component Categories

within the Unit Class would correspond to the major parts of

the document. A method to store the requirements of a

software project could be organized using the TRIAD Model by

grouping similar requirements together. For example, one

unit class may be for performance requirements, another for

functional and so on. Of course, if there are no

differences between the information describing performance

and functional requirements than only one Unit Class is

required.

Tags are attached to each Component Category in a Unit

Class. The tags are used as names for the Component

Categories, Unit Classes, Units, Entries, Attributes, Links

and Procedures. The query language uses the tags as objects

for searches of the information contained in a method.

www.manaraa.com

176

Besides their use as reference strings, tags, when carefully

chosen, can impart semantic knowledge to the user.

5.1.2 REFINEMENT LINKAGES

Each Category in a Unit Class may be a refinable

Category. The refinable Category links are called

Refinement Linkages, because they serve to refine a concept

from a Component Category of one Unit Class to another Unit

Class. The Refinement Links, which are the instances of the

Refinement Linkages, are used to support the organization

and chunking of concepts in the Units when the method is

applied. The navigation through the Units for browsing or

queries is done by using the Refinement Links as a default.

The Refinement Linkages are also essential in modeling

the different types of graphical representations that are

often found in methods. Hierarchies are simply modeled in

the TRIAD Model by restricting each Unit Class to only one

Refinement Link pointing to it. If a Unit has more than one

Refinement Link pointing to it, then directed graphs are

easily represented. Directed graphs are applicable to such

methods as Dataflow Diagrams and program Call Structure

charts. Although cycles of Units can be created, the

processing of them may become complicated and the value of a

method making extensive use of cycles might be suspect. If

www.manaraa.com

177

the intent of the method is to represent iterations through

the software life cycle, then the version feature of the

model implementation should be used to keep track of method

i terat ions.

5.1.3 ATTRIBUTES

Attributes attached to the Component Category provide

the means for storing as well as summarizing and describing.

Several software engineering methods consist primarily of

large blocks of text. For example, requirements analysis

methods and documentation support methods dictate the

content and procedure for accomp1ishing these respective

tasks. The Attributes in the Component Categories of the

Unit Classes for these types of methods often serve as

repositories for the text. In this case, the Categories in

the Unit Class are effectively used to provide further

organization of the text. For instance blocks of text can

be divided among the categories based on the method. A

documentation method illustrates this point. Manuals are

divided into sections and each section corresponding to a

Unit Class may be further subdivided by the Component

Categories. For example each command in the reference

manual can be stored in a separate Entry of a Component

Category. Such a structure imposed on the information by

www.manaraa.com

178

the method and supported by the TRIAD Model, greatly

increases the retrieval of relevant information contained in

the method.

The Attributes in addition to free form text, are used

for fixed format values (integers, reals, booleans and

words). In addition to being used to store values

describing the Component Categories, the Attributes are used

to implement many of the following special features of the

software engineering method support, such as, Secondary

Links, Procedure References and extended commands.

5.1.4- PROCEDURES

The TRIAD Procedure allows the TRIAD Model to represent

local procedural knowledge about the contents of the Unit or

an individual Entry. Coupled with the rule based invocation

criteria, the TRIAD Procedure supports methods by providing

a means to encapsulate local knowledge such as the design

rules in the Jackson Method. A Procedure could be written

to diagnose a structure clash and perhaps suggest

alternative designs to avoid the clash. The Procedure is

provided to the method definer as a means for customizing a

method spec ification. It is also the vehicle for storing

predefined queries, tool interfaces and the definition of

simple automatic processing steps.

www.manaraa.com

179

5.1.5 QUERY LANGUAGE

The greatest difficulty in processing information

stored and produced by the application of methods is the

strong reliance by many methods on natural language text.

Text strings are difficult and time consuming to process and

usually can only be searched by examining each character

individually. The query language is important for

supporting methods because the ability to formulate queries

and quickly retrieve information is the expected benefit of

encoding and keying information into a computer. The query

language is the major vehicle for utilizing the stored

information contained in the TRIAD Model Units. Some

example queries using the Call Structure example include:

o List all modules in the system?

o Find all modules rated as difficult to implement?

o Show all modules not yet completed?

o Compute the number of man-hours expended over the

estimate and

o Display a graph of module completion dates (actual vs.

est imated).

Although the quality of a query language is largely

implementation dependent? the TRIAD Model has been developed

with the objective of supporting a robust query language

easily. The TRIAD Model supports this diverse sampling of

queries by allowing:

www.manaraa.com

180

o The creation of tags to name components (to use as

objects of queries),

o Attributes to store method definer specified values*

o Procedure references to process attribute (all under

method definer control),

a Refinement links to navigate through the Units of the

software engineering method for logical and faster

searching and

o Secondary links to other units to improve navigation

performance and to search the information contained in

the method based on secondary relationships.

The actual syntax of the query language is not dictated

by the TRIAD Model and the design is left up to the

implementor. However, the syntax of the query language

should be easy to use especially for casual and novice

users. In addition, it should still be powerful enough to

satisfy the expert user.

A list of available commands can be easily extracted by

the query language using the above example. Or the

description of a particular command can be extracted by the

query package by searching all entries of the command

component category for the specified command name and

displaying the accompanying command description when the

name is located.

www.manaraa.com

l a i

5.1.6 SECONDARY LINKS

In addition to the Refinement Linkages, which are used

as the primary organization of Unit Classes, additional

Secondary Links can be defined and used to describe

relationships other than refinement. One use of Secondary

links is to tie all Units of the same Unit Class together.

Each Unit can then be processed by merely following the

Secondary Links. A more complicated use of Secondary Links

would be to create alternate paths through the refinement

graph. Another example of Secondary Link usage is to bind

requirements documents to actual software code which will be

developed later in the project. By this use of Secondary

Links, it is possible to associate requirements created in

the initial project phase (and created by a different

method) to software designs (and eventually code) created

later in the software life cycle.

5.2 REQUIRED IMPLEMENTATION FEATURES

The requirements for an implementation of the TRIAD

model given in Chapter II are:

o Easy to use interface,

o Efficient and fast storage and retrieval of Entries and

Uni ts,

www.manaraa.com

182

o Graphic views of Units and their Refinement Link

structures,

o Robust and easy to use text editor and

o Flexible tool interface.

5.2.1 USER INTERFACE

Much of the user interface is dependent on the

implementation vehicles and the implementor; however, the

TRIAD model encourages the organization of the user

interface about the Component Categories and Entries. It is

intended that the Component Category will usually be a

compact entity in the method. Further, the corresponding

Entry, when filled out, should fit on a single display

screen. The Attributes are associated with the Component

Categories and their values with the corresponding Entries,

therefore, the commands, help and tutorial services should

be similarly organized about the Component Categories and

Entries. Such a design will help the method definer to

create extended commands that are associated with the

Component Category that is the source (or target) of their

operation. (Extended commands are also defined in the same

manner as procedures. The difference between the two is

that extended commands must be explicitly invoked, usually

by the user. Procedures as already described, are invoked

www.manaraa.com

183

indirectly based on the user’s actions.

5.E.E STORAGE AND RETRIEVAL MECHANISM

The TRIAD model consists of only a few basic elements

which must be stored. This feature facilitates the use of

either a database management system or physical storage

scheme. The Component Categories and Attributes are the two

entities that must be stored for the Method Definition

Component. The Unit Classes and Refinement Linkages are

constructed by relations or pointers. The Secondary Links

can be implemented as Attributes. Similarly, the Entries and

Attribute Values are the two basic elements of the Method

Use. The Refinement Links, Component membership and Unit

membership are constructed from relations or pointers.

A graphic interface package is supported by the TRIAD

model by simply transforming the Units into icons and the

Refinement and Secondary Links into arcs. The placement of

the icons on the screen in a left to right, top to bottom

sequence is dictated by the sequence of the Entries which

refine to Units within each Unit beginning with the Initial

Un i t .

www.manaraa.com

ISA

5.2.3 TEXT E D I T O R

Text editor support in the TRIAD model is accomplished

by clearly del ineating the text from the method structure.

Text is stored in Attributes associated with Entries. This

separation permits the text editor to be invoked upon a text

string contained in an Attribute much as any external tool.

After the user is done editing* the text is replaced and

control is returned to the implementation for the next user

ac t i on .

5. 2. A TOOL INTERFACE

To effectively use existing tools* the TRIAD model

allows tools t o be invoked without direct Method Use

requests. This is accomplished by treating the tools as

Procedures and using the rule based invocation feature of

the Procedures to call the tools.

Further* t h e naming of the Attributes and the

separation of t h e Attribute values from the method

structure* allows the user to extract (or insert)

information in the Method Use by using the Attribute name

and calling an implementation provided primitive routine to

do the extraction (or insertion).

www.manaraa.com

185

Batch tools are easiest to int jrate because the data

can be extracted, the tool invoked (control relinquished),

and the results replaced (if necessary). Interactive tools

follow the same sequence but many times over, The ease of

integrating interactive tools depends largely on the

facilities provided by the operating system on which the

model is implemented.

The TRIAD Model supports tool interfacing by providing

data access routines and a comprehensive facility for

invoking tools.

5.3 MULTIPLE SOFTWARE ENGINEERING METHODS SUPPORT

There are two ways to provide support for multiple

software engineering methods. The first technique is to

provide translators from one method to another. In addition

to the effort involved in writing these translators, the

difference in representation between the same concept in

different software engineering methods poses a difficult

task for the translator. For example, a data oriented

software engineering method, such as Dataflow Diagrams does

not directly map to a Call Structure Chart. Different data

elements may have separate processing bubbles, but the

system structure can aggregate all of the processing in one

module.

www.manaraa.com

186

The translators must be bi-directiona1, since the

cyclic nature of software development may require that if an

error is discovered in the coding phase and fixed there,

then the correction should be reflected in the program

design and system design. Theoretically this should not

happen, because an error detected in the coding phase should

cause a change in the program design first and then the

coding change. The reality of the situation is that designs

are updated after the fact (if at all). This is primarily

true if the program coder was not the designer. From the

coder’s point of view it is faster to make the change first

(especially if it is a small change) and then update the

design later.

If more than one software engineering method is used

for a particular phase, for example, Jackson Method and

pseudocode for coding, then these translators would be run

constantly to keep the software representation current in

both methods.

The second technique for supporting multiple software

engineering methods is to use a common representational

scheme. The most direct approach of this technique is to

use a database management system to store all of the project

data, including the method representations. Some methods,

notably PSL/PSA, claim to have accomplished this, and can

support all methods CTEIC771. In fact several popular

methods have been implemented using PSL/PSA. Extensions to

www.manaraa.com

187

PSL/PSA provide dictionary features and support routines. A

meta-language processor allows a language based method to be

specified. However, PSL/PSA is still a language based

Database Management System approach to method specification.

It is unclear how effective PSL/PSA is as a specifier of

software engineering methods when it is itself a software

engineering method. CCHIK853 The TRIAD Model is a much more

general mechanism for method representation then PSL/PSA.

This database approach depends on the selection of an

appropriate database system that uses a data model which is

capable of representing software engineering methods easily

and completely. Chapter IV has already discussed the

problems with using database management systems to support

software engineering methods.

The TRIAD Model supports the second technique of

multiple method support by using a model specifically

designed for methods. Each method is defined as separate

Units. Secondary Links between different methods and

Procedures can be used to translate Entries and Attributes

between methods. Of course the specification of the

appropriate link types would still need to be done by a

human, the method specifier. However, the environment

generated from the TRIAD Model specification of the method

would do the translation dynamically. This feature makes it

very easy for a software engineer to switch methods and view

the same software in a different way. Figure 15 shows a

www.manaraa.com

laa

possible arrangement of several software engineering

methods. The methods are organized around a software life

cycle model. For each Unit Class representing a phase are

several subordinate Unit Classes each representing the

Initial Unit Class of a different method.

www.manaraa.com

189

Project | Master Accounting 1 1
Phase (More?) j Requirements 1 2
Phase (More?) | Design 1 3
Phase (More?) | Coding 1 *

i.
Phase Cod i ng 1 A

Method (More? > Pseudo Code | 7

Method (More?) Call Struct. | 8

Method (More? > Jackson Meth. j 9

Method | Jackson | 9

Method | Call Struct |

Method I Pseudo Code I 7

Phase Requ i rements 1 2
Method (More?) | SREM 1 5
Method (More?) | SADT 1 6

Figure 15. Multiple Software Engineering Methods

www.manaraa.com

CHAPTER VI

IMPLEMENTATION OF THE TRIAD MODEL

Although the -focus of this dissertation is on the model

for representing software engineering methods, the model was

implemented to verify its design and to demonstrate the use

of the model. This chapter describes aspects of that

implementation. An understanding of the implementation is

not necessary to understand the model, therefore, this

chapter may be skipped by the reader who is not interested

in the implementation.

The implementation of the TRIAD model represents a

large piece of software containing several thousand lines of

source code. Rather than describing the actual

implementation in detail, this chapter presents interesting

problems encountered during the implementation. The

solutions and reasons for the solution are also given. The

complete implementation is described in the documentation

method of the TRIAD multiple software engineering method.

The TRIAD software engineering method is described in the

next chapter. The TRIAD model operators defined in

Chapter III provide a detailed description of the necessary

functions that must be provided to adequately fully the

190

www.manaraa.com

191

TRIAD m o d e l .

The Grammar Form Model was used as the basis for an

implementation of a method specification a n d environment

generator called TRIAD- This implementation was done on a

DEC VAX using the C programming language running under the

UNIX operating system. (DEC and VAX are registered

trademarks of Digital Equipment Corporation- UNIX is a

registered trademark of Bell Laboratories) This

implementation of TRIAD had a strong grammar orientation.

The method specifier had to enumerate all o f the symbols

(tags) and the production rules manipulating the symbols to

create forms for a method. Under a contract from IBM, the

TRIAD concepts were implemented on an IBM A3A1 computer

running VM/CMS. To quickly implement TRIAD* an interpretive

programming language REXX CIBMRI and the system editor

CIBMXI were chosen as implementation vehicles. Learning

from the UNIX implementation experience, t h e VM

implementation abandoned the Grammar Form Model, especially

at the user interface level. The method specifier directly

manipulates the Component Categories and U n i t Classes rather

than productions and symbols to create entities representing

method concepts.

www.manaraa.com

1 9 2

6.1 IMPLEMENTATION VEHICLES

The interpretive language, REXX, was chosen for the IBM

implementation because it was designed to work closely with

the editor, XEDIT. In fact, it was possible to invoke XEDIT

from REXX and to issue editing commands within a REXX

procedure. Since a major part of a software engineering

environment is a text editor, this design decision

eliminated the writing of an editor. Of course the

resulting implementation was slower than if TRIAD had been

implemented using a compiled language such as PL/I or

PASCAL, however, the concepts embodied within the TRIAD

model were adequately demonstrated.

Since XEDIT was accustomed to working on entire files,

each Unit and Unit Class is stored as a separate file.

Chapter VIII discusses alternative methods of storing the

Unit Classes and Units.

XEDIT has several features which greatly facilitated

the implementation of TRIAD. Each line in a file being

edited by XEDIT can be assigned an integer representing its

display level. By setting a global display range, only

those lines whose display level falls within the range will

be visible. This feature allowed the mixing of TRIAD

control lines and method specific text with the entries.

The TRIAD control lines were assigned a different display

value then the method lines. For user displays, the display

www.manaraa.com

193

range was set to just the method lines. If a TRIAD REXX

routine was manipulating the file, then all lines would be

made visible (only to the REXX routine, the screen display

is maintained until the REXX routine exits). Although this

technique is not generally applicable, since it depends on

an esoteric feature of the editor, it did simplify the

storing of the structure and the actual data by allowing the

two types of data to be stored together in the same file.

The second valuable XEDIT feature was the label

facility. Eight character labels can be assigned to any

line in a file being edited by XEDIT. Thereafter, these

lines can be referenced directly by using the labels. This

feature was used extensively to jump directly to a specific

entry on the screen display, thereby eliminating time

consuming free string searches.

6.2 SYSTEM ORGANIZATION

The implementation is loosely divided into three major

groups of routines: Tuner or Method Definition Component,

Editing or Method Use Component), and System Integration

Library (common sub-routines). Since TRIAD operates under

XEDIT, each command is implemented in REXX as a separate

routine, stored in a separate file. The best way to view

the function of the TRIAD components is to look at the

www.manaraa.com

19A

commands implemented.

The Tuner contains commands to create Unit Classes and

Component Categories within the Unit Classes. Commands also

exist to modify existing method spec ifications. The Tuner

commands have been already described in Chapter III as the

TRIAD model operators.

The editor provides similar commands for the creation

of Units from the Unit Classes specified in the software

engineering method. The focus of this dissertation is on

the model for representing software engineering methods.

The editor merely creates instances of the Unit Classes

defined using the Tuner, therefore from a conceptual point

of view, the elements of the model are all covered in the

Method Definition Component. Thus, a detailed discussion of

the editor is not within the scope of this dissertation.

6.3 TUNER SUPPORT FEATURES

To help the method designer create a method

specification, TRIAD maintains three lists. The first list

is the names of all the Unit Classes defined. The second

list is all of the Unit Classes referenced, but not yet

defined. These lists are used by TRIAD to insure the

uniqueness of the Unit Class names. The lists are also

helpful to the method designer, who can specify a command

www.manaraa.com

195

which displays the lists on the terminal screen for

reference. Thus* if the method designer is defining the

method top down, a display of the undefined list will show

the names of the Unit Classes that must still be specified.

When the method specified using TRIAD is applied using

the TRIAD Method Use Component, the list of Unit Classes

shows all the Unit Classes defined. A third list is created

when a method is applied which contains the names of each

Unit, its Class and serial number. This list is used by the

environment to efficiently process the Units. As with the

other two lists, this list is also a valuable reference for

the software engineer applying the method. It summarizes

the method use by displaying in one place all of the Units,

which is particularly useful for a software engineer who is

just browsing. Figure 23 in the next chapter is one example

of this list.

6.4- HARDWARE FEATURES

TRIAD was designed to use an IBM 3279 terminal which is

a synchronous, color terminal. It has a standard typewriter

style keyboard with additional keys for cursor movement and

screen display control. Twelve function keys are also on

the keyboard which can either be bound to command strings or

detected by REXX programs as special function keys.

www.manaraa.com

196

Since the terminal is synchronous, an entire screen of

data is transmitted each time the enter key is pressed.

Cursor movement is under local terminal control and cannot

be detected by a program executing on the host computer.

This characteristic of the terminal makes protection of

screen fields and the tracking of cursor movements difficult

if not impossible. However, by using the protection feature

of the 3279 terminal, which is under program control, the

user’s editing actions can be limited to only program

designated areas of the screen.

XEDIT divides the screen into several blocks of lines

consisting of the following:

o Status line - information about the file currently being

ed i ted,

o Message lines - space to display error or other messages

from the editor or REXX programs. This space can

overlay the file area,

o File area - block of lines where the edited file is

displayed and changed,

o Current line - a line within the file area which is the

default target for all line oriented editing commands,

o Reserved area - block of lines within the file area

reserved by XEDIT commands. The user cannot change this

area and

o Command line - Line to enter editor commands.

TRIAD uses these blocks as follows to create a useful

www.manaraa.com

197

display for software engineering methods support,

o Status line - changed to show the user TRIAD specific

information such as the number of Secondary Links*

Attribute and queries attached to the Entry under the

current 1i ne >

o Message lines - placed as an overlay at the top of the

file area. The superimposed message can be cleared by

pressing the enter key and the original screen display

will be uncovered*

o File area - used to display the Unit Class or Unit. It

is kept as large as possible to minimize user

necessitated screen scrolling,

o Current line - retained in the center of the screen,

o Reserved area - Three lines are reserved at the bottom

of the file area. The first two lines display the

commands bound to the function keys and the third line

shows the names of alternative menus which contain

different key bindings and

o Command line - Retained at the very bottom of the

screen.

Figure 16 shows the screen layout.

www.manaraa.com

199

Status

T
Message area F

I
L
E

A
R
E
A

Current 1i ne

Command Menu

Available Menus

Command 1i ne

Figure 16. TRIAD Screen Layout

6.5 VISIBILITY

A difficult problem with any computer system is

organizing the display such that the right information is

available for inspection by the user. Since the display is

limited to the finite size of the computer terminal, it is

www.manaraa.com

199

not always possible to fit all of the information on the

screen at one time. Further, it is difficult to filter out

information without destroying the u s e r ’s perception of the

structure of the information being displayed. This problem

is best illustrated by considering overlapping information

within software engineering methods. For example, a program

coding method may record information about the program and

its development progress such as start date, estimated

completion date, size, estimated size, etc. This

information is of primary interest to management and should

reside in a management method. However, the software

engineer generates the information and has a right to have

access to it. The approach taken by TRIAD to solve this

problem is to replicate the information in both methods

(program coding and management) and use Procedures to

propagate a value whenever it changes. While this solution

solves the access problem to overlapping information, the

display problem still remains.

When the software engineer is involved in coding, the

presence of the management information is unnecessary. To

temporarily hide information, TRIAD attaches an Attribute

called "VISIBLE" to each organizer. This Attribute contains

a single value which must match the user set visibility

mode. A visibility mode of ALL causes all organizers to be

displayed regardless of their VISIBLE attribute value. This

feature allows the software engineer to restrict the display

www.manaraa.com

a o o

to only coding related organizers while doing coding,

thereby simplifying the display.

6.6 GRAPHICS SUPPORT

The TRIAD VM implementation uses graphics to present to

the software engineer a pictorial view of the software

engineering method and the resulting software application.

CHART871 (The TRIAD graphics interface was implemented by

Ronald Hartung) The graphics interface is implemented using

GDDM EIBMG] and operates on an IBM PC/GX synchronous

term i n a 1.

The simplest use of graphics in TRIAD is to draw

graphical images on the screen and allow the user to store

them in an Entry for subsequent display. This feature

allows graphical images to be integrated with text, which is

good for documentation methods.

The primary use of graphics in TRIAD is to provide the

software engineer with pictorial views of the method (Unit

Classes) and Units. Each Unit Class has an Attribute which

defines an icon to represent it. The icons can be designed

by the method designer using the GDDM based iconic editor.

By invoking a command to draw a graph of the method, the

TRIAD graphics interface uses the icon definitions and

refinement links to produce a graph of the method. In

www.manaraa.com

2 0 1

addition commands are provided to manipulate the display by

zooming and panning. Further, a Unit or Unit Class can be

selected for display in the normal text mode, thereby

allowing the software engineer to view the entire method’s

Units as a graph and edit it is a textual unit. The TRIAD

query language (TMQL) can also be used to select a region of

the method which is then displayed by the graphics interface

as a graph .

6.7 STORAGE AND RETRIEVAL OF TRIAD MODEL ENTITIES

Currently TRIAD stores each Unit Class and Unit in a

separate file. Since VM does provides data protection only

at the file level, and TRIAD should protect the Unit at the

Entry level, an alternative means of protection is needed.

Using the VM file system TRIAD provides just read-only

access to methods and instances of methods stored on a

different disk from the users. However, any modifications to

a Unit Class or Unit are made on a copy of the Unit Class or

Unit and stored on the users disk. Since database

management systems have solved the multi-user access

protection problems, a suitable database management system

was sought. The IBM relational database product, SQL was

used to implement a storage and retrieval facility CDAVEB6].

Relations were created to hold the Entries and Attributes.

www.manaraa.com

2 0 2

Since response time was already long, the use of the SQL

database management system exacerbated the condition.

Chapter VIII discusses possible solutions to this problem

that need further investigation.

6.S TRIAD MODEL QUERY LANGUAGE

An important feature of an software engineering

environment is the ability to query the stored information.

The user of a method wants to query on the structure of the

information contained in the model as well as its content.

Queries can be constructed to search only Entries of a

specified Category (tag) in Units of a specified Class. The

query language, TMQL, is modeled on SEQUEL, where a query

can be just on the structure of the Units (maps directly to

the SQL relations) then it is passed directly to SQL for

processing. In other more complex queries, a TRIAD query

processor parses the query into two parts— structure and

content. The structure part is generated as a SQL query and

the results of the query are searched for the content part

of the query by TRIAD.

www.manaraa.com

203

6.9 TOOL INTERFACE

Tools are invoked either explicitly by the user the

same way an extended command is, or automatica11y as a TRIAD

Procedure is. The means and criteria are controlled by the

method definer. In either case, the tool interface for any

tool is created using the TRIAD Procedure facilities. All of

the operators are available to extract data from the

Attributes and then invoke the external tool.

Tools are generally one of two types— Batch or

Interactive. Batch tools are the easiest to create

interfaces for. The data is extracted from the Attributes,

placed in a file and the tool is called. Upon completion,

any output is returned to the appropriate Attributes. Of

course, for large volumes of data from many Attributes, such

an interface can be quite large and cumbersome, but not

comp 1i cated

An interactive tool that requires data from the

Attributes interleaved with user responses, is much more

difficult to interface. If the host operating system which

the TRIAD model is implemented under, supports a filter

between the user and the tool, then this type of tool can be

interfaced. For those operating systems that do not support

a filter, the tool must be abandoned or an extensive amount

code be written to simulate the tool’s interactions. The

user responses can then be placed in a file and the tool

www.manaraa.com

20A

invoked as a batch tool. Of course, if partial computations

are made based on the user input then this me.'od probably

would not work either.

It is important to note that the problems with

interactive tool interfaces are not specific to the TRIAD

model, but occur when interfacing any interactive tool to

another system.

To support software engineering methods, an interface

from the TRIAD generated environment to existing tools is

essential. Such an interface facilitates the use of

existing tools without re-coding them to work within TRIAD.

The tool interface was demonstrated in the TRIAD

implementation with several tools.

The Document Composition Facility (SCRIPT) CIBMD1 was

simply integrated by creating an Attribute which indicates

the text stored in the Entry is SCRIPT input. A Procedure

was then written to extract text from the Entries (an SIL

provided function) and invoke SCRIPT. The output from

SCRIPT was sent directly to the printer, although it could

be returned to an Entry within the Unit specified for

holding formatted output. The addition of special

attributes to contain SCRIPT commands, which for instance,

when used by a Procedure, extracted the Entry name (another

SIL provided function) and made it a heading using the

SCRIPT heading command. This approach can be expanded by

using generic formatting commands in the Attributes. The

www.manaraa.com

ao5

Procedure extracting the text will use a translation table

to perform the translation from generic to specific

formatter commands. This approach creates independence of

formatter, allowing not just SCRIPT but other formatters to

be used .

Another use of the tool interface was to extract source

code entries and send it to a compiler for processing. This

interface for PL/I also extracted the error messages from

the source listing, which in PL/I are placed together at the

end of the source listing. The messages were positioned

following the offending statements and placed into an Entry

created for the purpose or holding the source listing. The

programmer is thus provided a compact view of the program

and any compilation errors.

6.10 TRIAD PROCEDURES

Several different uses for Procedures were discovered

during the application of the multiple software engineering

embodied in the TRIAD method. The first use of a Procedure

was the propagation of the tag from the Unit to the Entry

refining to the Unit. For example, the software engineer

may create a "MODULE" Unit Class for each module in a Call

Structure Chart. In the header of the "MODULE" Unit Class

is a space for the module name. Upon exit from the creation

www.manaraa.com

ao6

of an instance of the "MODULE" Unit Class, a Procedure is

invoked to copy the name of the module to the Entry refining

to the module Unit (See Figure 17).

COMPONENT

MODULES (MORE?) NewUn i t

MODULES (MORE?) NewCategory

MODULES NewCategory 22

Figure 17. Example of Information Propagation

The next use for a Procedure was necessitated by the

TRIAD implementation vehicles. Since Rexx is interpreted

and Xedit invokes a Rexx routine by searching for a file of

the same name and of type XEDIT, the Rexx source could not

be stored in a Unit and still be executable. The solution

was to create a Procedure called PULLCODE which is invoked

whenever the user positions the Cursor on "source code"

Entry. PULLCODE uses an Attribute associated with the Entry

to obtain the file name and file type. With this

www.manaraa.com

207

information it inserts the file into the Entry’s text area.

When the Entry is exited* a Procedure is invoked which

provides the user with the option of saving or discarding

the inserted code.

Procedures were also used to create syntax template

editors for Rexx and PL/I. The editors are invoked by

entering an Entry with the source code Attribute, which

gives the name of the source code compiler. Templates are

bound the terminal function keys and a menu is displayed

showing the bindings and the statement types generated by

pressing the different function keys. The user merely

positions the terminal cursor at the appropriate place to

insert a language structure and presses the appropriate

function key to generate the desired structure.

Procedures are also used to automatically update the

TRIAD help system based on the user modifying the system

documentation. The insertion of a new command in the list

of commands (LIST0FC0) Unit causes a Procedure to be invoked

which inserts the new command name and command description

obtained from the Entry into the TRIAD help system.

The TRIAD method was applied to the development of

TRIAD. In particular, the MAJQRCOM (major component) and

MODULES Unit Classes were used to partition the many TRIAD

routines into appropriate categories, and thus represent a

system Call Structure Chart.

www.manaraa.com

208

The use of TRIAD provided much insight into the

interface design and the usage problems created by adding

semantics to the TRIAD model. Making the TRIAD user aware of

existing Attributes, Secondary Links and commands (queries)

was one problem discovered through the use of TRIAD in

TRIAD.

6.11 USER INTERFACE

A key issue in the construction of any software today

is a good user interface. Often referred to as "user

friendly", the goal with TRIAD was to produce an interface

so that the user would never be in a quandary on how to

accomplish the next task.

The section on hardware features described the screen

layout, which was crafted so that the user would see the

list of available commands bound to the function keys from

which to choose the next command. Since TRIAD is a user

active type of system (the user must enter a command rather

than selecting from a menu or answering dialogue questions),

the menus are vital to keeping the user aware of available

options. The menu and function key binding concept is

carried a step farther, by changing the bindings and menu

based on the u s e r ’s previous action. For instance, if the

u ser’s previous command was to create a new Component

www.manaraa.com

209

Category, then the bindings and menu would be set to those

commands to edit (add/delete Attributes, Secondary Links and

Procedure references) a Component Category. The ultimate

purpose of this feature is to only present the user with

those commands which are valid (based on previous actions

and current display) and to anticipate the next likely

command.

TRIAD commands are designed to be single action and not

have any parameters. If parameters are required, then the

REXX procedures implementing the command will solicit the

required parameters from the user by way of a question and

answer dialogue.

Help with commands is provided to the user in two ways.

If the user knows the name of the command then entering HELP

followed by the command name will produce a brief

description of the command in the message area of the

screen.

The other help system is modeled after the CMS help

system and presents the user with a table of all available

commands from which the user selects one by placing the

cursor over it and striking enter or PF key 1. The command

description is then displayed on the screen.

www.manaraa.com

CHAPTER VII

DEMONSTRATION OF TRIAD MODEL

Several software engineering methods were used as the

basis for establishing the requirements for a model to

represent methods. In this chapter, two methods will be

defined using the TRIAD model to verify the design of the

model and to demonstrate the effectiveness, completeness and

support features of the model. The Jackson Method will be

defined first. The example from Chapter II will be used to

show the application of the TRIAD defined Jackson Method to

a software design problem. The second example is a multiple

software engineering method developed to support the

development of the TRIAD model implementation. Each of the

multiple methods is briefly described and two of the methods

are shown in detail.

7.1 JACKSON METHOD

Jackson Method, as described in Chapter II uses a few

symbols to create a view of software (data and control

structures) which enables the software engineer to design

modules. The objects of the method are boxes and lines

210

www.manaraa.com

2 1 1

which are arranged hierarchically to reflect a top down,

left to right order. The boxes are used by the designer to

partition the module or data structures into groups of

processing actions or substructures, each represented by a

box. The lines between the boxes are used to arrange the

boxes into a hierarchy. Three types of boxes are possible

in the Jackson Method, each representing a different

processing or data structure construct. The boxes are

differentiated by the presence or absence of a symbol in the

upper right hand corner of the box. A box with no symbol

represents a sequence of processing actions or data elements

and the actions are done according to their position in the

hierarchy or the data elements are ordered according to

their position in the hierarchy. A box with an asterisk (*)

in the upper right hand corner corresponds to an iteration

such as a DO or REPEAT statement in a programming language.

For a data structure, the iteration box represent a

repeatable data structure or an array of data elements.

IF-THEN-ELSE or CASE statements are represented by the

selection box which is signified by a small circle in the

upper right hand corner of the box. The selection box for a

data structure represents several data structures redefined

on the same space. For instance, the REDEFINES statement in

COBOL or the VARYING CASE RECORD in PASCAL are examples of

www.manaraa.com

2 1 2

the selection for data structures.

To define the Jackson Method using the TRIAD model, the

method objects are matched to the model elements. Each box

type is defined as a separate Unit Class. Since the boxes

are similar, the sequence box will be discussed in detail.

The initial Component Category contained within the sequence

Unit Class will have space for the name of the box. An

Attribute of type text will be associated with the Category

to hold the description of the processing actions the bux

represents. Another Attribute specifies the name of the

shape of the symbol, in this case a box, that the user

interface will display. A second Component Category is

defined to contain the line between this box and the

children boxes, which will be represented as Units of the

correct Unit Class. The Refinement Link from this Entry to

another Unit can be to any Unit of the three classes. This

Component Category is repeatable so that any Unit can have

more than one Entries in the Component which will create

Units subordinate to the Unit containing the Entries.

Figure 18 shows the user view of the Unit Class for the

sequence box as created using TRIAD. The Attributes are not

directly visible to the user and are present to show their

relationship to the Component Category. The visible text is

shown in bold type.

www.manaraa.com

2 1 3

Attributes: (icon;box)
Attributes: (description;text)
Sequence | | Unit Number

Attributes: (repeatable;)
Attributes: (refines to;box, obox or *box>
Subordinate Proc. | j Refinement Link

Figure 18. Sequence Unit Class for the Jackson Method

Returning to the name and address file example of

Chapter II, the application of the Jackson Method defined

using TRIAD would produce a tree of Units as shown in

Figure 19. Each Unit is shown in this figure as the user

would view it, i.e. the Attributes are not shown. This

figure shows the TRIAD model definition of the Jackson

Method. The graphic package will be able to display this

example using the familiar Jackson boxes as was originally

shown in Figure 7. Such a graphic interface would be

essential to successfully use the TRIAD model for the

Jackson Method, since the arrangement of the boxes is

critical for the user to understand the design.

www.manaraa.com

21^

Sequence Process Transaction Unit Number 1

Subordinate Proc Refines to 2

Subordinate Proc Invalid Refines to 3

Selec t i on Un i t Number 2Val id

Subordinate Proc. Update File Refines to

Subordinate Proc Pr i nt Rpts Refines to 5

Select ion Invalid Unit Number 3

Refines toSubordinate Proc

Select ion Update File Unit Number A-

Subordinate Proc Refines to

Select ion Print Reports Unit Number 5

Subordinate Proc Refines to

Figure 19. TRIAD Application of Jackson Method

www.manaraa.com

215
*

This example shows that the TRIAD model does generally

represent the Jackson Method using the three Unit Classes

each consisting of two Component Categories and appropriate

Attributes. Further, Attributes describe the Unit Class as

an icon so that the user can see and manipulate the method

graphically. By applying the TRIAD defined method to a

software design problem, a representation of the software in

the Jackson Method is quickly realized.

This example merely demonstrates that the TRIAD model

is capable of representing at least one method. The next

section expands the use of the TRIAD model to several

methods and demonstrates how features of the model such as

Secondary Links and Attributes can be combined with the

implementation to assist the user in the development of the

software.

7.2 THE TRIAD METHOD

A TRIAD generated multiple software engineering

environment for developing software was created and used to

document the TRIAD implementation. This method, called the

TRIAD Method, was loosely based on standards used to

maintain existing software (a relevant example to the

research sponsor). The method focused primarily on software

www.manaraa.com

coding and testing, but also contained Unit Classes

dedicated to requirements, documentation and management

The following software engineering methods are

contained in the TRIAD Method:

o Life Cycle,

o Documentation,

o Management,

o Requirements,

o Program Structure,

o Pseudo Code and

o Coding

Table shows each Unit Class, its corresponding

method and a brief description for the TRIAD multiple

method.

www.manaraa.com

217

Table 1^. TRIAD method Unit Classes

Unit Class Method Supported Descr ipt ion

PROJECT Software Life Cycle Start Unit Class
PHASEO Software Life Cycle Project Objectives
PHASEI Software Life Cycle Overall Architecture
PHASEI I Software Life Cycle Programming Logic
MEMBER Management Project Participants
SCHEDULE Management Schedule
REVIEW Management Rev i ew
HISTORY Documentat ion History of Project
USERSMAN Documentat ion Users Manual
INTRODUC Documentat ion Introduction to Manual
TERM Documentat ion Terms used in Project
USAGEEXA Documentat ion Usage Example
LISTOFCO Documentat ion List of Commands
FUNCTION Requirements Functional Overview
FUNCCHAR Requirements Functional Characteristics
CONFIGUR Requirements Conf igurat ion
RATIONAL Requirements Rationale for Design
HUMANFAC Requirements Human Factors
MAJORCOM Program Structure Major Component
MODULES Program Structure Modu1es
LIBRARY Program Structure Library of Modules
PROSEPRO Pseudo Code Prose Prolog
MAKE Cod i ng How to Compile and Link
DAT ASTRU Cod ing Data Structure

www.manaraa.com

218

The TRIAD method is primarily a life cycle model# which

was used to organize the software development process. The

Initial Unit Class is the Project Unit Class which owns the

classes for the other methods. The first method is the

software life cycle and is represented in the Unit Classes

PROJECT# PHASEO, PHASEI and PHASEII. Phase 0 is the project

objectives and reflects the initial planning for the

implementation. Phase I describes the overall architecture

of the TRIAD environment and represents the system

requirements, design and reasons for the design. Finally,

Phase II is the programming logic of the implementation.

A management method is represented in several Unit

Classes by capturing data relevant to the process of

creating software. Rather then being an isolated set of

Classes, these Unit Classes are referenced throughout the

other method Unit Classes by refinement links. The Unit

Classes MEMBER, lists all of the project participants and

their addresses and phone numbers. The Unit Class SCHEDULE

is used to track the time and effort expended on the

software development. Finally, the REVIEW Unit Class is

used to summarize the project meetings and record the

progress on the software development.

The documentation method consists of four Unit Classes

which describe the composition of the users manual. An

www.manaraa.com

219

additional Unit Class is used to record the history of the

project. It has content that is both of value as

docunentation and also for the management of the project.

The documentation method Unit Classes are HISTORY, USERSMAN,

INTRODUC, TERM, USAGEEXA and LISTOFCO.

The SCHEDULE and REVIEW Unit Classes are part of a

management method, because they record data on the progress

of the software development. This information can be used

by the project managers to make decisions concerning the

progress of the development and take actions to solve any

problems identified by the information contained in the

uni ts.

The requirements method is composed of the Unit Classes

FUNCTION, FUNCCHAR, RATIONAL, HUMANFAC and CONFIGUR. Each

of these classes focuses on particular requirements of the

software, namely, overall functions, functional

characteristics, rationale behind the design, human factors

and system configuration.

The software production is supported by three

methods— program structure, pseudocode and coding support.

The program structure method organizes the software major

components <MAJORCOM>, libraries and modules, with a Unit

Class corresponding to each organizational type. A major

component is composed of modules as is a library, however,

www.manaraa.com

250

the library is used to store common routines, while the

major component represents different processing sections of

the project. The Refinement Linkage from a major component

into a modules Unit Class represent the calling of a module.

The refinement linkage from a LIBRARY Unit Class into

MODULES a Unit Class represent the inclusion of the modules

into a library, which is a group of similar functions under

a general category, such as Tuner commands.

Coding support is provided through the Unit Classes

MAKE and DATASTRU which contains information to help the

software engineer code and debug the source code. The MAKE

Unit Class details the steps necessary to create executable

code from the various modules and libraries. The DATASTRU,

data structure, Unit Class is owned by the MAJORCOM Unit

Class and is used to describe all of the significant data

structures used by the modules within the major component.

Finally, the PROSEPRQ Unit Class supports a pseudo code

language method for describing a module’s function. This

Unit Class is used much like a documentation method, except

it contains documentation on the construction of the module.

This Unit Class is owned by the MODULES Unit Class.

Figure 20 shows the refinement link structure for the

multiple software engineering method used in the development

of TRIAD. The refinement links are represented by the

www.manaraa.com

221

arrows that constitute the ownership of one Unit Class by

another. Although this method is hierarchica1> there is no

restriction imposed by the TRIAD Model or TRIAD Environment

that it must be.

www.manaraa.com

222

PROJECT

FUNCTION

PHASEU

RATIONAL

MODULES

PHASEO

DATASTOU

USAGEEX

MEMBERS USERMAN

HUMANFAC;

SCHEDULE;

m a j o r c o m

HISTORY REVIEW

FUNCCHARl CONFIG

LIBRARY

MAKE

Figure 20. TRIAD Multiple Method Unit Class Refinements

www.manaraa.com

From Figure 20 the relationship between the various

methods is apparent. Most of the methods are in small

groups of Unit Classes clustered together. For example, at

the top of the figure, the software life cycle method

organizes the rest of the methods. At the left, is the

documentation method with a small tree of Unit Classes

representing the users manual. Next to the documentation

method is the requirements method with several Unit Classes

serially owned by the PHASEI Unit Class. Similarly, the

program structure method is owned by the Programming logic

Unit Class, PHASEII. Only the management method Unit

Classes, HISTORY and REVIEW are attached to most of the high

level Unit Classes and not organized into its own hierarchy.

Further evolution of the management method would indeed

contain some independent Unit Classes that would contain

summarized data, such as a complete project schedule. But

the current management classes are used to contain data at

the point of creation.

7.2.1 DOCUMENTATION METHOD

The documentation and program structure methods will be

used to illustrate the use of the TRIAD Method. Figure 21

shows the user view of the Unit Class USERMAN. Each

www.manaraa.com

254

Component Category is separated by a solid line. The first

Component Category is the one for the Unit Class and

contains the method and Unit Class name with space left in

the center for a descriptive string to be entered whenever a

new Unit is created. On the right is the Unit’s serial

number. The next four Component Categories are for the

storage of text strings describing the topic suggested by

the Component Category name. The following 3 Component

Categories can each be replicated which is indicated by the

string "(MORE?)" appearing at the far right. In addition to

being replicated individually, i.e., a Section may be

composed of more than one topic, the indentation of the

category names indicates that the entire structure may be

replicated by requesting the replication of a higher level

category. For instance, a document can consist of several

sections each with at least one topic. More than one

document can be stored in this unit, each with at least one

section, consisting of at least one topic per section.

www.manaraa.com

225

| TRIADMD-USERMAN | | UNIT 1

I Version | 1

| Author | 1

| Distribution | I

| Disclaimer | 1

| Contact | |

| Document | (MORE?) 1

1 Section | (MORE?) 1

| Topic j iMORE?) 1

1 INTRODUC | | Unit 1

1 USAGEEXA | | Unit 1

| LISTOFCO | | Unit 1

Figure 21. User Manual (USERMAN) Unit Class

www.manaraa.com

226

Figure 22 shows the user view of the Unit created from

the USERMAN Unit Class. The structure is of course the

same, but the replication of the topic categories is shown.

Only one line of text appears for each topic > because the

sections are quite long. The trailing dots (....) means

that more text follows. Note also that the Entries

referring to the Unit Classes, INTRQDUC, USAGEEX and

LISTOFCO are shown as being refined. This is indicated by

the title text shown in the center and the existence of the

Unit serial number at the far right of the Entry.

www.manaraa.com

227

j TRIADMD-USERMAN | Notes for Method Designer | UNIT 19 1

| Version | 3 dated 1 1 86 I

| Author | Hochstettler and Ramanathan 1

| Distribution | Upon request I

j Disclaimer | I

| Contact | Dr. Jay Ramanathan 1

| Document j How to use TRIAD (MORE?) I

| Section | Getting Started (MORE?) I

| Topic | Getting Started
TRIAD is a shell environment

(MORE?) 1

| Topic | Defining the method on
Problem solving methods divide ..

paper (MORE?) 1

| Topic J Using the TRIAD Tuner
After logging into the IBM system

(MORE?))

| Topic | Attributes
Predefining attributes

(MORE?) 1

| INTRODUC j Terminology and Guided Tour | Unit 20 |

| USAGEEXA | Usage Example | Unit 29 |

| LISTQFCO | TRIAD Commands | Unit 30 |

Figure 22. Completed User Manual (USERMAN) Unit

www.manaraa.com

228

Figure 23 s’hows a part of the list of Units created

from the TRIAD Method. The numbers to the left of the Unit

Class name indicates the level of the Unit. For instance

the unit PROJECT is the Initial Unit and is assigned a level

of 1. All Units refined from the PROJECT Unit have a level

of 2 and so on. The levels are also indented to impart a

visual image of the levels to the user.

This list serves several purposes, much like the table

of contents of a book. First it shows each available unit

and gives the serial number, which allows a user to display

it directly without navigating through the network of Units.

Second it summarizes the Units’ contents by showing the Unit

Class name, its title and all units refined from it. Thus

it shows the structure of the method in an outline form.

7.2.2 PROGRAM STRUCTURE METHOD

Although Figure 23 is only a partial list of all of the

Units created from the TRIAD Method Unit Classes, it shows

most of the Units and imparts the structure of the multiple

methods applied in the TRIAD Method. The program structure

method is shown at the bottom of the figure. Unfortunately

the TRIAD Tuner program structure, as shown in Figure 2*+

does not have an interesting structure, since each operator

www.manaraa.com

229

has a module that is invoked by a command name. Thus, the

expressive power of the method is not directly shown. From

the method definition of the Program Structure method it can

be seen that complex software structures can be represented

with these Unit Classes. The major component Tuner, shown

in the MAJORCOM Unit of the figure has three Units refined

from it. The REVIEW Unit describes the experience with a

Tuner prototype. The data structure Units describe the

major data structures used by the tuner routines. Finally

for each routine a MODULES Unit is listed. Each MODULES

Unit describes the implementation of the command in detail.

It also has a pointer to the file containing the source code

for review or modification.

From these figures it should be noted that the TRIAD

Method attempts to localize information about a concept.

For example, the Program Structure method uses a two tier

structure to organize a program. All of the modules are

owned by the major component. In addition the data

structure descriptions are localized with the major

component.

www.manaraa.com

230

PROJECT TRIAD Software Engineering Env.
. MEMBER Dr. Jay Ramanathan
. MEMBER Mr. Thorbjorn Andersson
. MEMBER Mr. William H. Hochstet11e r ,111
. MEMBER Mr. Ronnie Sarkar
. MEMBER Mr. Robert Vermilyer
. MEMBER Mr. Ronald Hartung
, MEMBER Mr. James Davenport
. USERSMAN I Notes for the method designer
3. INTRODUC) Terminology and guided tour

A. TERM Method
A. TERM Unit Class
A. TERM Blank Unit
A. TERM Unit List
A. TERM Tuning
A. TERM Instantiating
A. TERM Refining

3. USAGEEX I Usage Example
3. LISTOFCO j TRIAD Commands
PHASEO Project Objectives

Overall Architecture
j Suggestions for Product

, PHASEI
3. REVIEW j Suggestions for Product Arch,
3. FUNCTION Functional Overview
3. CONFIGUR Configuration Specifications
, PHASEII | Programming Logic
3. HISTORY
3. MAJORCOM

Reason for the SIL breakdown
Tuner component

A. REVIEW 1 Experience with prototype
A. DATASTRU Method Lists
A. DATASTRU Blank Units
A. DATASTRU Attr ibutes
A. MODULES AddAt tr i bute
A. MODULES DeleteAttr ibute
A. MODULES DeleteUni t
A. MODULES DeleteCategory
A. MODULES NewCategory
A. MODULES NewUn i t
A. MODULES Pr intBUL
A. MODULES Ret i 1 1 e

Un t 1
Un t 2
Un t 3
Un t A
Un t 5
Un t 6
Un t 7
Un t a
Un t 19
Un t 20
Un t 21
Un t 21
Un t 22
Un t 2A
Un t 25
Un t 26
Un t 27
Un t 29
Un t 30
Un t 31
Un t 32
Un t 309
Un t 33
Un t 3A
Un t 35
Un t 309
Un t 36
Un. t 308
Un t 86
Un t 87
Un t 88
Un t 70
Un t 2AA
Un t 2A5
Un t 72
Un t 93
Un t 78
Un t 70
Un t 7A

Figure 23. Partial List of Units from the TRIAD Method

www.manaraa.com

231

PRO JECT

MAJORCOMMAJORCOM MAJORCOM

MODULES MODULESDATASTRU MODULES MODULESHISTORY

MODULES MODULESDATASTRU MODULESDATASTRU MODULES

Figure 2^. Structure of Units for the Tuner Major Component

www.manaraa.com

832

CHAPTER VIII

TRIAD MODEL EVALUATION

The evaluation of any model is best done by determining

how well the model actually reflects the object being

modeled. This chapter reviews the features of the TRIAD

model and their applicability to software engineering

methods. Software engineering methods are of two general

forms; either textual or representationa1. Textual methods

merely organize large text collections for convenient use

and comprehension. Representational methods attempt to

model problem solutions or software by using compact

notations, usually graphs.

The TRIAD model models textual software engineering

methods extremely well. The model supports the storage of

text in its original format as a text type Attribute. In

addition, the text can be partitioned into Unit Classes and

Component Categories within each Unit Class. This feature

allows the text to be subdivided to manageable pieces. Also

all of the Attributes can be applied to the individual

pieces of text thereby increasing the power and meaning of

the Attributes by spec ification. The Refinement Linkages

allow a block of text to be refined into more specific

232

www.manaraa.com

233

concepts* creating the ability to organize large blocks of

text into a network of smaller related pieces. The

Attributes allow descriptive values about the text to be

stored separate from, but physically adjacent to the text

they modify. Additional support is provided by the TRIAD

editor which allows the text to be edited directly within

the Component Entry. Further, the Procedures allow

procedural knowledge about the text to be associated with

Component Categories and Unit Classes, thereby offering the

software engineer help in using the method. Secondary links

from one Entry to another Entry allows the expression of a

relationship that is different from that of the Refinement

Linkage (ownership).

Support for representational types of software

engineering methods, such as S ADT, data flow diagrams or

flowcharts is similar to textual method support except for

the meaning of the Refinement Linkage and the user view of

the method. The representational methods create diagrams of

software and to be effectively supported by a software

engineering environment, these pictures must be represented

and displayed. Although TRIAD depends heavily upon the

graphical interface to draw and edit the pictures, the TRIAD

Model has a structure that allows a direct translation from

the model to a graphic representation.

www.manaraa.com

S3A

The Dataflow Diagram example presented in Chapter II

illustrates the features of the TRIAD model that represent

graphical methods. The Refinement Linkage is used to

represent the arcs in the graphical methods. The Component

Category contains an Attribute to store the text usually

contained within the nodes of the graph or attached to the

arc. The icon Attribute associated with the Unit Classes,

allows the method designer to design and name an icon

independent of its use in the method. These three features

of the TRIAD Model make it very easy to represent directed

graph based methods. Using this representation, a graphics

interface can display the graphical representation of the

software which the user can view and manipulate.

Further, the Procedures provide the same capabilities

for graphical software engineering methods as for textual

software engineering methods, namely to encode procedural

knowledge about the software engineering method and its

application.

The Procedures in addition to providing the means for

encoding the rules and policies of a method are used to

create extended commands and build interfaces to existing

tools. The Procedures are implemented using a procedural

language provided by the TRIAD model implementation. Also

provided by the implementation are primitives for navigation

through the network of Units and manipulation of the TRIAD

model elements. These facilities allow extended commands to

www.manaraa.com

235

be built, which accomplish tasks specific to a method and

even more specific to the software being implemented. For

example, a Procedure can be written to navigate through a

call structure method and collect the percentage completed

of the coding of each module. The collected percentages can

be combined to represent a project completion percentage.

This type of processing is likely to be repeated

periodically by a project manager to evaluate the current

progress of the project. By creating a Procedure, giving it

a distinct command name and then putting references to the

command name in the places in the method where the manager

is likely to request the information generated by the

command, the user is assisted in his job.

Tool interfaces are also implemented using the

Procedures because the navigation and extraction primitives

provide the means of placing information into a format

acceptable to tools. The text formatter example in

Chapter VI demonstrates the power that the tool interface

provides to the user to exploit existing products. The

significant point of the text formatter interface is that

most of the interface was done by using the features already

provided by the TRIAD model. No additional "fudging" was

required. The formatter Attributes were created using the

Attribute facility provided. The text extraction primitives

were used to get the text from the Entries in the Entries

and then the formatter was invoked.

www.manaraa.com

236

S.l RESEARCH CONTRIBUTIONS

This dissertation described a model for representing

multiple software engineering methods in a software life

cycle. Due to the number and difference in software

engineering methods for the various phases of the software

life cycle) this model provides a general representation for

identifying the basic elements in most methods. Further,

computer support can be provided to models that previously

were unsupported and to new methods not yet defined, by

describing the method using the model and by using the

computer support package provided with the implementation of

the mode 1 .

The model was implemented to demonstrate that the model

spec ification was capable of being implemented. The

implementation was used to evaluate the model and gain

insight into further extensions and enhancements to the

model. By expressing several software engineering methods

in the model, implementation experience with multiple

methods was also gained.

www.manaraa.com

237

8. 2 F U T U R E E N H A N C E M E N T S

The ability of the TRIAD Model to represent methods is

clear both by analysis and the application of the model to

various methods. Future work in the support of methods is

along the following divergent lines:

o Knowledge based support of software engineering methods)

o Specialization of TRIAD Model elements to support

classes of methods and

o Integration of operating system and database concepts

into the implementation to improve performance of the

pro to type.

Knowledge based support of software engineering methods

will focus more AI and expert systems techniques on software

engineering tasks. This work can proceed from a solid base

of the TRIAD Model* which can be used to represent

information and knowledge. The application of AI techniques

will still be in the assisting role rather than one of

automatic programming. Simple applications of AI are

possible by using Procedures to implement local procedures

representing expert knowledge about design and coding. Open

questions still remain as to the best way of building these

procedures. The usual technique of using a general purpose

procedural language may not be as good as a declarative

1anguage.

www.manaraa.com

238

The current approach of writing Procedures using

implementation provided primitives within a procedural

programming language provides the software engineer

sufficient power, but not much help in applying a method.

Advances in languages to assist in the creation of these

Procedures will increase the ability of method users to

utilize the power of the model without an investment in time

and effort similar to writing programs. The creation of

such a language implies that a greater understanding of the

requirements of such Procedures is available. At this time,

experience with the model and its implementation has not

produced sufficient knowledge to design a higher level

Procedure language. However, as experience with the model

is gained, insight on the use of the Procedures may provide

the means for designing a easier to use Procedure

implementation language.

During the creation and application of the software

engineering methods to support the TRIAD development, it was

clear that certain Attributes were necessary to support the

methods. As more features were added, more special

Attributes were required. This trend is analogous to

database research where general models have been modified

and extended to support a specific class of problems with

built-in types CSU86]. This same process of specializing

will continue both in the software engineering method domain

as more methods are applied using TRIAD, and also as new

www.manaraa.com

239

problem domains are explored.

Finally, the TRIAD implementation as a prototype,

adequately demonstrated the concepts of software engineering

environments to support multiple software engineering

methods. To learn more about the support a software

engineer needs on the job, a more responsive implementation

is required. The capabilities of the implementation need to

be increased by ensuring data integrity and allowing

multi-user access. Although these are primarily database

implementation issues, the use of IBM’s SQL demonstrated

that the loss of performance is not necessarily offset by a

gain in power and function. TRIAD has many of the aspects

of a database (data model and query language), therefore,

TRIAD needs to use the physical level access techniques of a

database system to improve its performance. If TRIAD’S

performance can be improved, it will become a laboratory for

studying the definition and use of software engineering

methods in particular and environments in general.

www.manaraa.com

LIST OF REFERENCES

ALF085

AMBR84

BERG79

BIGG80

BOEH84

BQRG85

BR0D84

CAIN77

CHEN76

ALFORD, MACKi "SREM at the Age of Eight: The
Distributed Computing Design System", IEEE
Computer, Volume 18, Number A, (Mar 1985) p. 36-46.

AMBRIOLA, V., GAIL E. KAISER AND ROBERT J. ELLISON,
"An Action Routine Model for ALOE", Tech. Report,
Dept, of CS, CMU, August, 1984.

BERGLAND, G.D., "Structured Design Methodologies",
Tutor ial: Software Design Stratea ies G.D. Bergland
editor, IEEE, Long Beach, C a ., 1979, p. 168-181.

BIGGS, CHARLES L., AND WILLIAM ATKINS, Managing the
Systems Development Process, Prentice-Ha11,
Englewood N J , 1980.

BOEHM, BARRY W. AND ET A L , "A Software Development
Environment for Improving Productivity", IEEE
Computer, Volume 17, Number 6, (June 1984),
p. 30-44.

BORGIDA, ALEXANDER, "Features of Languages for the
Development of Information Systems at the
Conceptual Level", IEEE Software Volume 8, Number
1, (January 1985), p. 63-78.

BRODIE, MICHAEL L., "On the Development of Data
Models", On. Conceptual Model ing , Brodie,
Mylopoulos, Scmidt, eds., Springer-Ver1a g , 1984,
Chapter 8, p. 19-47.

CAINE, STEPHEN H. AND E. KENT GORDON, "PDL— A Tool
for Software Design", Tutor ial on Software Design
Tools, IEEE, Long Beach, C a ., 1977, p. 168-173.

CHEN, PETER, "The Entity-Re1 ationship
Model— Towards a Unified View of Data", ACM
Transact ions on Database Systems. Volume 1, Number
1, (March 1976) p. 9-36.

840

www.manaraa.com

241

C H I K 8 5

DAHL72

DATE77

DAVE86

DAVI83

DEMA79

DEME82

D0L078

FIKE85

FREE77

HAMM81

CHIKOFSKY, ELLIOT AND DANIEL TEICHROEW, "Generating
Flexible Methodology-Specific System Development
Environments", The Proceed i nos of the ACM-IEEE
SOFTFAIR II, (December 1985), p. 24-31 .

DAHL, O—A , E. W. DIJKSTRA AND C. A. R. HOARE,
Structured Programmino, Academic Press, New York,
NY, 1972, 220 pages.

DATE, C .J . , An Introduct ion to Database Systems,
Addison-Wes1e y , Second Edition, 1977.

DAVENPORT, JAMES, The Use o f a Relat i ona 1 Database
on a Software Eng i neer i ng Environment, Masters T h .,
in progress, The Ohio State University, Columbus,
Ohio, December 1986.

DAVIS, WILLIAM S., Too Is and Technioues for
Structured Systems Analysis and Desion,
Addison-Wesley, Reading, M a , 1983, 187 pages.

DEMARCO, TOM, Structured Ana 1vsis and System
Specification", Prentice Hall, New York, NY, 1978,
339 pages.

DEMETROVICS, JANOS, ELOD KNUTH AND PETER RADO,
"Spec ificat ion Meta Systems", IEEE Computer, Volume
15, Number 5, May 1982, p. 29-35.

DOLOTTA, T.A., R.C. HAIGHT AND J.R. MASHEY, "The
Programmer’s Workbench", The Bel 1 System Technical
Journal Volume 57, Number 6, (July-August 1978),
p. 2177-2200.

FIKES,RICHARD AND TOM KEHLER, "The Role of
Frame-Based Representation in Reasoning",
Communicat ions of the ACM, Volume 28, Number 9,
Sept. 1985, p. 904-920.

FREEMAN, PETER AND ANTHONY I. WASSERMAN (EDS.),
Tutoria1 on Software Design Techniques, 2nd E d .,
IEEE, Long Beach, Ca., 1977, 288 pages. Number ,

HAMMER, MICHAEL, "Database Description with SDM: A
Semantic Database Model", ACM Transact ions on
Database Systems, Volume 6, Number 3, (Sept. 1981)
p . 351—386.

www.manaraa.com

2A2

H A R T 8 7

HEAC79

I BMD

IBMG

IBMR

IBMX

JACK78

KENT79

KNUT68

KUQ83

LAUB82

M A T H 8 6

HARTUNG, RONALD, The design and Applicat ion of
Graph ics for TRIAD, Ph.D. T h . , in progress, The
Ohio State University, Columbus, Ohio, March 1987.

H EACQX, H. C., "RDL: A Language for Software
Development", ACM SIGPLAN No t i ces Volume 1A, Number
12, December 1979, p. 71-79.

IBM, Document Composi t ion Fac i1i tv i Users Guide,
Ath edition, IBM Corporation, New York, 1983, A15
p ages.

IBM, GDDM Reference Manua1 - IBM Corporation, New
York, 1983, 321 pages.

IBM, System Product Interpreter Reference, First
Edition, IBM Corporation, New York, 1983, 160
pages .

IBM, System Produc t Ed i tor Reference, edition, IBM
Corporation, New York, 1982, 78 pages.

JACKSON, MICHAEL A . , Pr inc iples of Program Desion,
Academic Press, New York, NY, 1975, 297 pages.

KENT, WILLIAM, "Limitations of Record-Based
Information Models", ACM Transactions on Database
Systems, Volume A, Number 1, (March 1979),
p. 107-131.

KNUTH, D. E . , "Semantics of Context-free
Languages", Mathematical Systems Theory Volume 2,
Number 1, (1968), p. 127 1A5.

KUO, J. C., Design and Implementation of a
Form—Based Software Environment, Ph.D . T h ., The
Ohio State University, Columbus, Ohio, August 1983,
328 pages.

LAUBER, RUDOLF, "Development Support Systems", IEEE
Computer Volume 15, Number 5, May 1982, pp. 36-A6.

MATHIS, ROBERT, F., "The Last 10 Percent", IEEE
Transact ions on Software Ena i neer i na, Volume 12,
Number 6, June, 1986, p. 705-712.

www.manaraa.com

2A3

MCKN85

MINS75

PARK78

PARN79

PARN85

PETE79

P0LA78

PYE69

RAMA86

RICH83

R0SS77a

MCKNIGHT, WALTER L . * A Meta System for Generating
Software Eng ineeri no Environments, Ph.D. T h ., The
Ohio State University, Columbus, Ohio, June 1985,
277 pages.

MINSKY, MARVIN, "A Framework for Representing
Knowledge", The Psycho logy of Computer Vision,
Patrick Henry Winston, Ed., McGraw-Hill, 1975,
p. 211-277.

PARKER, JOHN A., "A Comparison of Design
Methodologies", ACM S i gSoft Software Eng i neer i ng
Notes, Volume 3, Number 9, October 1978.

PARNAS, DAVID L., “On the Criteria to be used in
Decomposing Systems Into Modules", Communicat ions
of the ACM, Volume 13, Number 12, (Dec. 1972),
p. 131-136.

PARNAS, DAVID L., PAUL C. CLEMENTS AND DAVID M.
WEISS, "The Modular Structure of Complex Systems",
IEEE Transactions on Software Engineering. Volume
11, Number 3, (Mar. 1985), p. 259-266.

PETERS, LAWRENCE J. AND LEONARD L. TRIPP,
"Comparing Software Design Strategies", Tutor ial;
Software Design Strategies. Bergland 2A3 Gordon
(eds.), IEEE Long Beach, C a ., 1979, p. 185-188.

POLAN, MARVIN AND FRED J. SARISONEN, Software
Design Methodoloav Inter im Report, Teledyne Brown
Engineering, Huntsville, A I ., May 1978.

PYE, DAVID, The Nature of Design, Studio
Vistal/Reinhold, New York, NY, 1975.

RAMAMOORTHY, C.V., V. GARG AND A. PRAKESH,
"Programming In The Large, IEEE Transact ions on
Software Eng i neer i n g , Volume 12, Number 7, July,
1986 p. 769-783.

RICH, ELAINE, Artificial Intel 1ioence, McGraw-Hill,
New York, NY, 1983, A36 pages.

ROSS, DOUGLAS T. AND KENNETH E. SCHOMAN,JR.,
"Structured Analysis for Requirements Definition",
IEEE Transactions on Software Engineer ing, Volume
3, Number 1, (Jan. 1977), p. 6-15.

/

www.manaraa.com

2 L L

R0SS77b

R0SS85

RUBI05

SCHE78

S0FT81

SONI83

STAY77

STEV77

SU86

TEIC77

ROSS, DOUGLAS T., "Structured Ana 1ysis(S A): A
Language for Communicating Ideas", IEEE
Transae t i ons on Software Ena i neer i n a , Volume 3,
Number 1, (Jan. 1977), p. 16-33.

ROSS, DOUGLAS T. "Interview: Douglas Ross Talks
about Structured Analysis", IEEE Computer Volume
18, Number 7, (July 1985), p. 80-88.

RUBIN, HOWARD A., D.C. VON KLEECK AND DAVID BARTZ,
"Integrating Software Development Estimation,
Planning, Scheduling and Tracking: The PLANMACS
System”, Proceed i nos of the ACM-IEEE SOFTAIR I I,
(Dec. 1985), p. 2L-31.

SCHETHTER, DAVID, "The Skeleton Program
Methodology", Datamation November, 1978,
p. 1A7-150.

SOFTECH, INC., "Integrated Computer-Aided
Manufacturing (ICAM)", Tech Report, Materials
Laboratory, Wright-Patterson AFB, June, 1981, 14-1
pages.

S O N I , D. A., Des i an and M o d e 1i no of TRI AD - An
Adaotable, Integrated Software Environment,
Environment, Ph.D. Th., The Ohio State University,
Columbus, Ohio, June 1983, 2A7 pages.

STAY, J. F. "HIPO and Integrated Program Design",
Tutor ial on Software Design Techniques, Freeman and
Wasserman (eds.), IEEE Long Beach, Ca., 1977,
p. 17^-178.

STEVENS, W. P., G. J. MYERS AND L. L. CONSTANTINE,
"Structured Design", Tutor i a 1 on Software Design
Techniques, Freeman and Wasserman (eds.), IEEE Long
Beach, Ca., 1977, p. 97-100.

SU, STANLEY Y. W., "Modeling Integrated
Manufacturing Data with SAM*", IEEE Computer,
Volume 19, Number 1, January 1986, p. 3A-^t9.

TEICHROEW, DAVID AND ERNEST A. HERSHEY,11 I,
"PSL/PSA: A computer-Aided Technique for Structured
Documentation and Analysis of Information
Processing Systems", IEEE Tr ansact ions o_n Software
Eng i neer i no, Volume 3, Number 1, (Jan. 1977)
p. <tl-A8.

www.manaraa.com

2A5

TSIC82

WIN072

YAU86

Y0UR78

Y0UR86

TSICHRITZIS, DIONYSIS AND FREDERICK H. LOCHOVSKY,
Data Models, Prentice-Ha11, 1982, 381 pages.

WINOGRAD, TERRY "Frame Representations and the
Declarative/procedural Controversy", Representat ion
and Understanding, Bobrow and Co 11ins (eds. >,
Academic Press, 1975, p. 185-210.

YAU, S.S. AND J. J-P. TSAI, "A Survey of Software
Design Techniques", IEEE Transac t ions on Software
Eno i neer i n g , Volume 12, Number 6, July, 1986,
p. 703-721.

YOURDON, EDWARD AND LARRY L. CONSTANTINE,
Structured Design, Second Ed., Yourdon Press, New
York, 1978.

YOURDON, EDWARD "What Ever Happened to Structured
Analysis", Datamat i o n , Volume 32, Number 11, June
1986, p. 133-138.

