INFORMATION TO USERS

While the most advanced technology has been used to
photograph and reproduce this manuscript, the quality of
the reproduction is heavily dependent upon the quality of
the material submitted. For example:

® Manuscript pages may have indistinct print. In such
cases, the best available copy has been filmed.

® Manuscripts may not always be complete. In such
cases, a note will indicate that it is not possible to
obtain missing pages.

¢ Copyrighted material may have been removed from
the manuscript. In such cases, a note will indicate the
deletion.

Oversize materials (e.g., maps, drawings, and charts) are
photographed by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each oversize page is
also filmed as one exposure and is available, for an
additional charge, as a standard 35mm slide or as a 17”’x 23"
black and white photographic print.

Most photographs reproduce acceptably on positive
microfilm or microfiche but lack the clarity on xerographic
copies made from the microfilm. For an additional charge,
35mm slides of 6”x 9” black and white photographic prints
are available for any photographs or illustrations that
cannot be reproduced satisfactorily by xerography.







8703559

Hochstettler, William Henry, Il

A MODEL FOR SUPPORTING MULTIPLE SOFTWARE ENGINEERING
METHODS IN A SOFTWARE ENVIRONMENT

The Ohio State University PH.D. 1986

University
Microfilms
International swon.zeeb road, ann Aror, mi 28106

Copyright 1986
by
Hochstettler, William Henry, 1l
All Rights Reserved






A MODEL FOR SUPPORTING MULTIPLE SOFTWARE
ENGINEERING METHODS IN A SOFTWARE ENVIRONMENT

DISSERTATION

Presented in Partial Fulfillment of the Requirements for
the Degree Doctor of Philosophy in the Graduate

School of the Ohio State University

BY

William Henry Hochstettler IIl, B.S5., M.S.
R I
The Ohio State University
1986

Dissertation Committee: Approved by

J. Ramanathan

D. S. Kerr J:— ‘: A__Z__ ?

W. F. Ogden dviser
Department of Computer
and Information Ecience



Copyright by
William Henry Hachstettler 111
1986



Dedicated to my mother, Edna M. Hochstettler, who was unable
to witness the fulfillment of this goal.

ii



ACKMNIWLEDGEMENTS

The author gratefully acknowledges the support,
dedication and time that Jay Ramanathan willing gave for the
completion of this dissertation. Bill Ogden and Doug Kerr,
as members of the reading committee, contributed much to the
quality and readability of the dissertation and their time
is appreciated. The contributions of the TRIAD group,
Thorbjorn Andersson, Ron Hartung, Merete Jordal, Walt
McKnight, Ronnie Sarkar and Raobert Vermilyer did much to
ingpire and solidify many of the ideas presented in the
dissertation. 0Over the years many culleagues and faculty
members have had the belief in my abilities to encourage me
to achieve this goal. This list includes: Kevin 0’Kane for
starting me on computer science research at the graduate
level, Paul deMaine, for advising my Master’s degree at the
Pennsylvania State University, Larry Rose for overseeing my
generals examination and Charley Shubra for encouraging me
to join the TRIAD Research Group. The assistance- provided
by the International Business Machines Corporation both in
equipment and research funding for the implementation of the
TRIAD model is greatly appreciated. Finally, the moral
support provided by my parents and the sacrifices made by my
wife to enable me to complete this ambition is beyond
repayment.

iii



January 23,

1970-1972 .

1973 . .

1974-1975 .

1977 . . . .

1978-1980 .

1980~-1984 .

1983 . . . .

1984 . . . .

1985-Present

1951

VITA

Born Toledos Ohio

Engineering Practice Program
Summers only at Owens-Corning
Fiberglas Corp., Toledes Ohio

B.S5., Washington University in
St. Louis, Missouri

Programmer-Analyst, St. Louis
County Government, Claytons,
Missouri

M.S.s The Pennsylvania State
University, State College,
Pennsylvania

Graduate Research Assistant,
OCLC, Inc., Columbus, Ohio

Research Scientist, Battelle
Columbus- Laboratories, Columbus,
Ohio

Adjunct Faculty member Franklin
University and Capital
University, Columbus, Ohio

Applications Programming Manager
Health Development Incorporated,
Columbus, Ohio

The Ohioc State University,
Columbus, Ohio

iv



PUBLICATIONS

"Computer Based Records as an Aid to Power Plant
Availability Improvement", (Co-author, Don Anson and Larry
Stember), Presented at the Joint Power Generation
Conference, September 22, 1983.

"A High Level Simulation Model of a Networked Computer
System", Proceedings of the 1980 Winter Simulation
Conference, (Co-author Lawrence L. Rose), IEEE Long Beach.,
California, December 1980, pp. 275-289.

FIELDS OF STUDY

The design, implementation and application of practical
software environments which can be applied to realistic
software engineering problems.

Additional interests include software engineering methods
used to support software design, analysis, and construction
in addition to the management of the software development
process.

In addition to software engineering, operating systems,
programming languages, databases and simulation are fields
of study.



TABLE OF CONTENTS

ACKNOWLEDGEMENTS « . & & & o o « o & & o « s « o « = » = 11
VITA v v 4 v s« s a4 s a o 2 o a 2 « « o o s o o « s o « 21v
TABLE OF CONTENTS . .« & & & & o « + o « o « s o o o « « « Vi
LIST OF TABLES. . . . ¢ 4 & 4 4 o & 4 o o o w o o « « » Vviii
LIST OF FIBGURES . . . + v & 4 o & o o = = = o a o a « « o« ix
CHAPTER PAGE
I. Introduction . . . . « v ¢ & 4 4 e e e e e e e o« o 11
1.1 Software Engineering Methods in
The Software Life Cycle . . . . .« « « . . . . . 11
1.2 The Need For A Model To Represent
Software Engineering Methods . . . . . . . . . 13
1.3 The TRIAD model . . . . ¢ v ¢« o« ¢ o « o« o« &« « « 19
1.4 Advantages of the TRIAD model
Over Existing Method Support e « « s+ e« &« « « . 33
1.5 Contributions . . . . . . . « « « « + = . . . . 38
1.6 Organization of the Dissertation . . . . . . . 39
II. The Need for Software Engineering Methods . . . . . 41l
2.1 Software Engineering Methods . . . . . . . . . 43
2.2 Methods in the Software Life Cycle . . . . . . 54
2.3 Computer Based Support for Software
Engineering Methods . . . . . . .+ . .+ « « .+ « & 59
2.4 Environments To Support Software
Engineering Methods . . . . . +« - + « - - . . . 68
2.5 Environments to Support Multiple Software
Engineering Methods . . + . « « « « « « « « » » 73
2.6 Requirements for Software Engineering Methods . 75
11I. TRIAD Model Definition . . . . . . « « . . « . . . 81
3.1 The TRIAD Model . . . . . « & o « = « =« « - « « Bl
3.2 TRIAD Model Operators . . . . « « « « « « » = 106
3.3 Tuning a Method . . . . . .« . « « « & « « « = 135
3.4 TRIAD Procedures . « +: « o &« « « « o o s =« o 138

vi



3.9 User View of the TRIAD Model . . . . . . . . 140
3.6 Using The TRIAD Model to Represent A Method . 142

iv. Alternative Models . . . ¢ o « ¢« ¢ « o « o & o« 1446
4.1 Grammar FOrm . ¢ o ¢ & o o o o o & & « o & = 147
4.2 Database Models . . . « ¢ « o & ¢ « « o &« & . 165
4.3 Knowledge Representation Frames . . . . . . . 169

V. Support Features of the TRIAD Model for
Software Engineering Methods . . . . . . .« ¢« . . 171
5.1 Required Method Structure Support Features . 173
5.2 Required Implementation Features . . . . . . 181

5.3 Multiple Software Engineering Methods Support 1895

VI. Implementation of the TRIAD Model . . . . . . . . 190
6.1 Implementation Vehicles . . . . . . .« . . . . 192
6.2 System Organization . . . « « &+ « ¢ + « + « & 193
6.3 Tuner Support Features . . . ¢« « « o & « + & 194
6.4 Hardware Features . . . . o ¢ o =« o & & o« « o 195
6.9 Visibility . . o + + ¢ ¢ 4 0 e e e e a4 e . 198
6.6 Graphics Support . . . . e v e e e s 4 = 200
6.7 Storage and Retrieval of TRIAD Model Entities 201
6.8 TRIAD Model Query Language . . . . . . . . . 202
6.9 Tool Interface . . . « & & o ¢ o o« & v &« & . 203
&£.10 TRIAD Procedures « « « « « « « o o o = o « = 205
6.11 User Interface . . .+ ¢« ¢« o v o & o o« & & o 208
VII. Demonstration of TRIAD Model e e ke e e e e e . 210
7.1 Jackson Method . . . . . + o + v & = « « . . 210
7.2 The TRIAD Method . . . + &« « ¢ « o« &+ « +» « » 215
VIII. TRIAD Model Evaluation . . . . . « . + . . . . . 232
8.1 Research Contributions . . . . . « « « « « . 236
8.2 Future Enhancements . . . « . . ¢« « « « &« + 237

LIST OF REFERENCES. . . - « 4 o 4 &+ o o 4 o « o « 2 » - 240



LIST OF TABLES

TABLES

1. Composite Objects (Units) In

The Call Structure Example. e e e s

2. Generalization of the Call Structure
Composite Objects. . . . . . . . . .

3. Software Engineering Methods
by Software Life Cycle Phase. . e .

4. Formal Definition of the TRIAD Model
Method Definition Component. . . . .

S. Faormal Definition of the TRIAD Model

Method Use Component. e e e s e e .
&. TRIAD Model Constraints. . . . . . .
7. Method Definition Operators. . . . .
8. Method Use Operators. s e s e e e

9. Formal Definition of the
TRIAD Method Definition Operators. .

10. Formal Definition of the Method Use Operators.
11. Comparison of TRIAD and Grammar Form Models.

12. Comparison of Method Definition Operators.

13. Comparison of Method Use Operators.

14. TRIAD method Unit Classes. e e e s

viii

Methaod

PAGE

24

29

37

89

102

104

122
152
158

162



LIST OF FIGURES

FIGURES PAGE
1. Jackson Method Structure for the Method Use. . . . . . 21
2. Module Call Structure Example. . . . . . . . . . . . . 22
3. Jackson Method Structure for the Method Definition. . 28
4. SADT diagram of the Name and Address File System. . . 44
S. Dataflow Diagram of the Name

and Address File System. . . . . « . . . ¢ . « < . . ., 47
6. Name and Address System Call Structure. . s e« . « « « 4B
7. Jackson Method Representation of the

Name and Address System. . « ¢« ¢« 4 « ¢ » « & « s « « « 30
8. Flowchart of the Name and Address File System. . . . . 32
9. Method Definition Component of the TRIAD Model. - . . 83
10. TRIAD Model. . + « + &+ & o & & & & & & & o & « « + . 93
11. User View of the TRIAD Model. . . . . . . .« .« .+« . . 141
12. Module unit. e )
13. Instantiated TRIAD Model Units. . . . . . . . . . . 143
14. Grammar Form Maodel. . . . . . « . & o « + « « « « . 149
15. Multiple Software Engineering Methaods. . . . o« . . 189
16. TRIAD Screen Layout. e e s e e e e e e e e e e e 198
17. Example of Information Propagation. . . . . . . . . 206
18. Sequence Unit Clasgs for the Jackson Method. . . . . 213

ix



19,

20.

21.

2c.

23.

24.

TRIAD Application of Jackson Method. e e e e e s

TRIAD Multiple Method Unit Class Refinements. . .

User Manual (USERMAN) Unit Class. . « « « « o« « o

Completed User Manual (USERMAN) Unit. . . . . . .
Partial List of Units from the TRIAD Method. .

Structure of Units for the Tuner Major Component.

222

223

227

230

231



CHAPTER 1

INTRODUCTION

This dissertétion describes the structure, use and
implementation of the TRIAD model, which is a model for the
representation and automation of software engineering
methods (hereafter referred to simply as methods). The model
is designed not only to support the use of single methods,
but also to suppari the cooperative use of multiple methods.
In addition, the model is structured so that when a method
is described in the model’s terminology, computer based

support for the model can be readily provided.

1.1 SOFTWARE ENGINEERING METHODS IN

THE SOFTWARE LIFE CYCLE

The software life cycle model divides software
development into distinct phases--requirements analysis,
system design, program design, cocding and maintenance
[BIGGB8O]. The tasks accomplished in each phase transform a
software system from an idea to implemented code. Beginning

with an imprecise idea, each succeeding phase of the life

11



1e

cycle creates a less vague, more precise description of the
desired software. At the conclusion of each phase, a
document is produced describing the accomplishments of the
phase. On the basis of this document, a decision is made on
whether to proceed with the development or cancel it. If in
the later phases, errors are discovered in work done in the
previous phases, the previous phase is re—-entered and the
errors corrected. The life cycle then becomes iterative.
Many iterations may be made through the life cycle before
the software implementation is completed and the software
distributed fcr use.

To facilitate software development, many methods have
been created which help the software engineer to accomplish
the tasks in a particular phase and to manage the overall
software development process [DAVIB83,FREE771. In general,
methods have two goals. The first goal is to support the
building of the software product, while the second is to
support the mariagement of the software engineering process.

Methods have three components. The first component is
a way of describing the desired software in some particular
representation. The second component is a way of describing
the meaning of this software representation and the third is
a systematic procedure for creating the representation of

the software. Methods usually focus on a specific software



13

life cycle phase or on individual tasks within a phase,; such
as requirements collection or program design. Each method
develops a specific representation which is best for
representing the software during the phase being applied.
This representation is often naot the same as (or even close
to) the intended final result--the source code.

The methods are usually consistently applied in the
initial iteration of the phasej however, if the phase is
re-entered, especially for minor corrections, the natural
tendency is not to re-apply the method and update the
representation in the earlier phase, but just to make the
correction in the phase in which it was discovered. Part of
this praoblem is discipline, but the othef part is the amount
of effort required to maintain the method of a preceding
phase during iterations of the life cycle. In addition, the
primary focus of the staff is to complete the current phase,
not adjust the previous one. This tendency destroys the
historical value of the method as a documentation of the
software engineering process.

Since the methods are phase specific, different methods
are employed in different phases. The transition between
phases becomes difficult if the representation for the
software is not consistent. One phase may be largely

textual, while the next may be graphical and the following



14

hierarchical. In addition, some methods do not even have
computer based support.

For those software engineering methods having computer
based support for the method application, the support is
specific far a particular method such as IDEF for SADT
[SOFT81]1 and PSL/PSA [TEIC771. Although the use of the
method is still beneficial, the expected henefit of storing
the method in a computer based support tool is not realized
unless the tool has a common representation. Thus, the
problem of phase to phase transition is exacerbated by the
computer based support rather than lessened.

To support software engineering methods effectively
within the software life cycle, a model is needed for
representing software engineering methods and providing
features to support the method use. This model must be
capable of capturing the representation properties of the
method as well as the procedural properties. To represent
most software engineering methods, the model must be capable
of handling many types of data--in particular, large blocks
of unstructured text which are characteristic of the early
life cycle phases and of software documentation. In the
later phases, the model must be capable of representing
methods such as Dataflow Diagrams and program structure

charts, which are graphical in nature. The procedural



15

properties of a software engineering method describe how tne
method is used with or applied to the representational
features of the model. Computer based support provides the
capability of going beyond merely recording the application
of the method to actually assisting the software engineers
by reminding them of method constraints and by doing
elementary reasoning which may, for example, suggest when

design alternatives are possible [WHIL8S,YOURB61.

1.2 THE NEED FOR A MUDEL TO REPRESENT

SOFTWARE ENGINEERING METHODS

Conclusive proof of the value of applying software
engineering methods to large projects is inherently
difficult to obtain. Experimentation, the obvious épproach
for proving the value of a method, is too costly to
undertake. This is true because experimentation would
require developing the project twice—--once using a method
and then a second time without using one. Another preoblem
with experimentation is an experiment requires the
availability of software engineers of demonstrably
comparable skill for the parallel developments. So, at
present, the only certain thing is that the use of a method

is beneficial mainly because the method provides an ordered,



16

repraoducible approach to software development. Bergland
comments on the motivation for method use as follows, "...
software development is so inefficient that almost anything
can improve it" [BERG791].

Computer support for software engineering methods can
improve the application of most methods. Because of the
tremendous processing capabilities of computer systems, the
storing, retrieval and processing of the information used by
the method can be facilitated. 1In addition, the computer,
which is already needed for code development, can serve as a
central information repository for the entire project
development. Advanced workstations provide facilities, such
as bit mapped displays, multiple windows and keyboard
customizations, for all aspects of software development
including document production [YOURB8&61. A general model
with computer based support for representing software
engineering methods enhances the use of those methods that
do not have existing computer based support and may increase
the power of those with computer based support.

In general, methads fall into one of two broad
categories; either phase dependent or phase independent
[RAMAB&6]. Phase dependent methods are aimed at supporting

the engineer accomplishing the tasks in a particular phase.

For example, Jackson Method is aimed at the program design



17

phase of the software life cycle. Phase independent methods
are applicable to the process of managing the whole software
development process including all of the phases of the
software life cycle. Management methods include cost
estimation, scheduling and version control. Methods
applicable to software in general include traceability (of
regquirements), metrics and re-usability.

When several software engineering methods are used to
develop software, there is a tendency to only actively use
the methods while the work is progressing in the phase to
which the method is applicable. This tendency causes the
value of the method to be lost when changes occur in the
software due to errors or new'requirements. Thus, the
ability to share representations of the software between
phases and methods helps the software engineers make changes
to the software by easily shifting between phases and
methods during the iterations of the software life cycle.

The problem this dissertation addresses is the need for
a model for uniformly representing software engineering
methods. This model must be capable of capturing the
structure of the method, the meaning of the structure, and
the rules and procedures governing the use of the method.
Since many methods use either hierarchical or graphical

structures to represent software and the development



18

process,; the model must be able to represent both structural
types. The meaning of the structure refers to the implied
knowledge inherent in the way the method structures
information. For example, SADT makes use of arrows and
boxes to represent software. The baoxes represent processes
or actions while the arrows mean different things depending
on their position. Arrows into the left side of a box are
input, while arrows from the right side of a box represent
cutputs. So the model must not only represent arrows, but
allow the expression of what the arrows mean in the context
of the method. Finally, methods usually have a procedure or
a set of rules for the application of the method. To
support methods effectively, the model mﬁst allow this
procedure to be expressed in a form that will aid the user
in applying the method according to the rules or procedure.
Net only is a language for expressing the rules or procedure
necessary, but these procedures or rules must be associated
with the proper elements of the method. Using the SADT
example again, each arrow has different constraints based on
its location on the box. For example, an output arrow,
which originates from the right side of a box, can naot he
attached to the right side of another b¢y. The ability to
associate rules and procedures with the method structure is

essential to capture the steps necessary to correctly apply



1e

a method.

A further requirement for the model is that software
engineers find it easy to use both to define and to use
existing methods as well as new ones. Finally, the model
must allow easy computer implementation in order to support
those methods which currently lack such support as well as
expand the support for those methods which now have

independent or tool based support.

1.3 THE TRIAD MODEL

The TRIAD model is a new model synthesized from
research on attribute grammars, databases and knowledge
representation systems [T3IC82,DATE77,MINS75,KNUT481. The
TRIAD model provides a framework for capturing the |
representation of software prescribed by a particular method
and for supplying procedures for processing the
representation. The processing is provided by specially
coded procedures which are associated with the method
structure and interfaces to existing tools.

A Jackson Structure diagram can be used to identify and
show the hierarchy of elements in the TRIAD model. Figure 1
shows the TRIAD model elements which express the use of a

software engineering method. The figure uses a slightly



20

expanded Jackson diagram with a plus (+) used to represent 1
or more instances of an item. The asterisk (#) remains the

symbol for zero or more iterations. The 0/1 notation in the
bottom right corner of the Refinement Linkages box indicates

that the element may have at most one occurrence.



System
+
Unit
+
Component
+
Entry

Attributes

Refinement
Links
0/1

Attribute

N

Name

Figure 1.

Value

-\\‘\\\\‘\\“\-‘

21

Secondary
Links

Secondary
Link

A

Name

Target

Jackson Method Structure for the Method Use




a2

Typical software engineering methods use symbols to
represent aggregates of composite objects. These symbols
are often boxes such as those used in Jacksan, SADT and Call
Structure diagrams, or circles such as in Dataflow diagrams.
In the TRIAD model such composite objects are captured by
the generic notion of Units. Figure 2 shows a simple call
structure diagram where each module is represented by a box
and the arrows between the boxes represent the source and
target of a module invocation. The names of the modules are

placed within the box.

Figure 2. Module Call Structure Example



a3

In the TRIAD model, each module is a Unit. The above
example represents the structure of a program in terms of
module names. The Call Structure method may expand the
module description by associating the author’s name, date
cHanged, source code and major data structures with each
module name. These objects, i.e. the auvthor’s name, date,
etc., form the composite objects of the method. Components
represent these objects or Units in the TRIAD model. Table
1 shows the composite objects contained in the Call

Structure example.



Table 1. Composite Objects (Units)

The Call Structure Example

Module Name: A
Author: Bob
Date Changed: 09/12/84
Source Code (lines_of_code: 5):
PROCEDURE A;
BEGIN
B3
Cs
END.

Module Name: B
Author: Sarah
Date Changed: 03/03/85
Ma jor Data Structure (referenced by C): Z
Source Code (lines_of_code: 64):
PROCEDURE B3
TYPE 2 ....
BEGIN

END;

Module Name: C

Author: Beth

Date Changed: 09/12/86

Source Code (lines_of_code: 128):
PROCEDURE C3;
BEGIN

END3;

In

24



25

In some methods these Compaonents actually consist of an
arbitrarily long sequence of the same object. For example,
a module may undergo many changes; therefore, to maintain a
history of all of the changess, a list of all of the dates
the module was chanrged is necessary. In the TRIAD Model
each occurrence of a Component in the sequence is known as
an Entry, thus each date a module is changed is an Entry in
the "Date Changed" Component.

Entries in turn have various Attributes which describe
and summarize the Entry. In the Call Structure method
example, the Component containing the source code may have
an Attribute called lines_of_code which contains the number
of source statements contained in the module.

Typical software engineering methods, in addition to
using symbols to represent the composite objects in the
method, also use symbols to structure these objects. Arrows
between modules are used in the Call Structure method to
show which modules are called by each module. The TRIAD
model calls such arrows Refinement Linkages.

Some methods attempt to represent additional
relationships between the objects. For example, the Call
Structure method may use the data structure definitions for
each module to show the common external data elements of the

program. In this casey, a dashed arrow in the Call Structure



26

method would be used to connect each data structure with all
modules that reference it. Secondary Links are used in the
TRIAD model to show such relationships. The Secondary Links
would be from each Entry in a Component containing a data
structure to the Entry of the Unit containing the module
referencing the data structure.

Figure 1 shows the structure of the elements in the
TRIAD model. From this figure it can be easily seen that a
Unit is composed of one or more Components. Each Component,
in turn, contains one or more Entries. The Entry consists
of three elements—-Attributes, Refinement Linkages and
Secondary Links. The Attributes of which there may be zero
or more, contain a name and a value. The Secondary Links
may consist of zero or more links also and each link
contains a Link Name and Target Entry.

By the use of Figure 2 this informal discussion has
shown how a simple method would be expressed using the TRIAD
model. Additional features of the TRIAD model permit the
generalization of this specific method example to a set of
elements capable of representing any program using the Call
Structure method. Figure 3 shows the TRIAD Model Method
Definition structure which is the generalization of

Figure 1.



a7

The Units are generalized to Unit Classes. For example
the Unit Class for the Call Structure method is a single one
representing a module. Within each Unit, the Compaonents and
Entries are generalizec to Component Categories within a
Unit Class. The author, source code and date changed are
examﬁles of Component Categories from the Call Structure
method example. The Refinement Linkages are the same except
that the source and target are now Component Categories and
Unit Classes respectively rather than the specific
Camponents and Units of the method example. The Attributes
attached to the Entries are generalized to Attribute Names.
The Attribute Names include a type definition and the names
are associated with a Component Category. Thus, in the Call
Structure method example, the lines_of_code Attribute is
named lines_of_code, its Type Definition is an integer and
it is associated with the source code Component Category.
Finally, the Secondary Links are generalized in the same
manner as the Refinement Linkages, in that the Secondary
Links are named and the source and target Component

Categories are named.



28

Method
+
Unit
Class
+
Component
Category
* * * *
Attributes Refinement Secondary Procedure
Linkages Links References
0/1
Name Type Name CoDom Name Rule

Figure 3. Jackson Method Structure for the Method Definition



a9

Figure 1 shows the generalization of the TRIAD model
Method Use Component (shown in Figure 3) to a TRIAD model
Method Definition Component. The two figures are very
similar. The major difference is the Components and Entries
in Figure 3 are generalized as Component Categories in
Figure 1 Each Component Category is shown as possessing
zero or more Attributes, Secondary Linkages and Procedure
References. In addition the Component Category may also
contain a Refinement Linkage. Each Attribute has a name and
a type. A name and a codomain for each Secondary Lirnkage is
alsa present. Finally each Procedure Reference has a name
and an invocation rule.

Table 1 shown earlier depicted the composite objects
contained in the Call Structure method example. Table 2
shows the same objects after performing the generalization

described above.

Table 2. Generalization of the Call Structure Methad

Compasite Objects

Module Name:
Author:
Date Changed:
Ma jor Data Structure
(link: common_ds;
source: Major Data Structure; target: Module):



Table 2 (continued) 30

Source Code (lines_of_code: integer):

The preceding discussion of the TRIAD model has shown
how the method’s structure can be represented. In addition
to the structure, most metheods have rules and procedures for
putting software into the method’s structure. The TRIAD
model supports this aspect of methods by allowing procedures
to be written and associated with the Component Categories
(composite objects of the method). For example, in the call
structure example a rule is that each module name must be
unique. A small procedure checks each module name as the
software engineer creates a Unit for each module against the
existing names and ensures that a name is not re-used.

So far only single method support has been discussed,
however; software development entails many activities,; most
of which are supported by different methods. Each method
can be expressed separately using the TRIAD model, but the
maximum benefit of the iterative nature of the software life
cycle is obtained when the different methods are linked
together using the TRIAD model.

Returning to the Call Structure method example, this
transition to a multiple software engineering method is
illustrated when the program design is complete and coding

begins, the call structure method can be expanded by adding



31

Component Cateqories to support coding such as references to
syntax directed editors or Component Categories containing
pseudo code.

At the conclusion of the design phase, another
different method could be applied for coding support. For
this method, the software engineer has several choices. The
first choice is to expand the existing call structure method
to support the coding process. This expansion can be done
by adding Component Categories to the existing Unit Class.
In addition, entirely new Unit Classes may be added to
support unique aspects of the coding method, which are not
already captured in the call structure method.

Another chaoice is to apply a different method for
coding support. Since both methods are defined using the
TRIAD model, it is possible to automatically propagate, or
in this case, copy the information from the call structure
method to the coding method. An alternate approach is to
create Secondary Links between Unit Classes in the call
structure and coding methods which represent the same
module. The ease of transition between methods is possible
because a common representation for the methods is used and
because the Unit Classes are designed to support the sharing

of information between methods.



32

In addition to the structural representation gf the
method provided by the TRIAD model, the procedural aspects
of applying a method are enhanced by using the model. The
definition of the method using the TRIAD model assists the
software engineer applying the method by providing a
standard representation of the method which when supported
by a computer is capable of providing computer based support
for the method. Coding of method specific procedures by the
method definer to monitor and interpret the method users’
actions, provides guidance in applying the method. These
procedures can enforce method rules, such as limiting the
number of modules called by any other module. In addition,
information can be propagated automatically by these
procedures. In a management method the completion of the
coding of a module may cause quality assurance to be
notified, a new test version of the software to be created,
and a message sent to the manager that the module ig
completed which causes a new task for the programmer to be
scheduled. All of this is done without any explicit action
on the part of the programmer other than indicating that the

code is completed.



33

1.4 ADVANTAGES OF THE TRIAD MODEL

OVER EXISTING METHOD SUFPPORT

The TRIAD model achieves its comprehensive approach to
software engineering method support over the entire software
life cycle by focusing on the support of existing methods.
The alternative approach is to try to create yet another new
method which is applicable to all phases of the life cycle.
Support of existing methods is important because the
existing methods are widely used and represent a large
investment of resources for development of support systems
and for training personnel in their use. Thus, uniform
computer support is extended to methods in which the current
computer professionals are already skilled.

Other attempts at comprehensive method support have
used database management systems and attribute grammars to
store project data. Database systems do not cope well with
unstructured text which is a major component of most
methods. Admittedly this is an implementation restriction,
but it becomes an issue when computer based method support
is provided using off the shelf software. In addition, the
underlying data model may not be suitable for the definition
of a schema to represent a method. For instance, a

relaticnal model can represent a graphical method, but not



34

as precisely or as directly as the network model, which uses
a graph to represent the method structure. The issue is how
closely does the model reflect the method structure so that
the user can easily conceptualize the method once it.is
expressed using the model.

Attribute grammars were used as the underlying model in
earlier versions of TRIAD [MCKN831. They proved effective,
but were difficult to use for those other than computer
scientists who are skilled in programming languages.
Describing the relationships of the various entities in a
typical method requires a great many detailed definitions in
the grammar approach. This detail also extends to the
Camponent Categories contained within the Unit Classes.

This level of detail is unnecessary because the most
important relationship involving Component Categories is
that of membership in a Unit Class. For example, in the
call structure method, the Unit Class contained several
Component Categories (author, date changed, data structure
and source code). These Component Category are positioned
serially within the Unit Class in the order they were
created. In a grammar model, these four Component
Categories can be structured in the same manner by the

production



35

A ->BCDE
Categories. An alternate structure for these Componsnt
Categories is given by the following productions:

A -> B F

F ->CDE
the grammar model has the expressive power of additional
structure for the Component Categories, but the software
engineering methods do not require the structure.

The specification of the TRIAD model was driven by two
goals. The first goal was to represent existing methads
used in all phases of the software life cycle. The second
goal was to provide a model consistent with existing
methods, such that the software engineer could easily define
a method using the model. Each of the major models
(attribute grammars, database systems and knowledge '
representation systems) from which the TRIAD model was
synthesized are not capable of satisfying both of these
goals completely. Grammars were capable of the
representation, but were difficult to manipulate. Knowledge
frames were easier to manipulate, but operated at too
specialized a level for software engineering methods.
Databases compromised on both goals. The representation was
not complete,; and for some data models it was difficult to

manipulate. By selecting and combining the best aspects of



36

all three, a better model was derived.

A key feature of the TRIAD model is the facility for
allowing the incorporation of procedures to manipulate and
process the representation. This feature will allow method
application to become easier by anticipating the scftware
engineer’s needs based on the experience of previous users
of the method. Without this feature to represent the
experience gained in using the method, the relevance of the
method is not enhanced or easily customized.

The TRIAD model is consistent with software engineering
methods because it supports graphical connections and text
storage. The majority of the methods rely on graphical
models; especially to represent the software code. The
inclusion of a graphics interface allows a symbolic
manipulation of the model (entries and categories), thus
providing the software engineer with an even more consistent
representation of the method.

The implementation of the TRIAD model demonstrated that
the model was easily automated. It also made it easier to
validate the model by supporting rapid and accurate
application of the model to a number of example methods. In
addition, the implementation process and the use of the
implementation suggested improvements in the model. One of

the results was the creation of special features to support



37

classes of methods. Most of these spec:al features are
unique Attributes and Procedures which conirol the
presentation and use of the Component Categories within the
Unit Classes.

The best demonstration of the value of the TRIAD model
was its use to describe a multiple method envirsnment. This
exercise went beyond just specifying the several methods;
the multiple method was actually used to apply the software
engineering methods to the creation of a new version of the
TRIAD model implementation. As with the other uses of the
implementation, significant insight was gained into the use
of the model and into the improvement of the TRIAD model
implementation.

The TRIAD model, because of its capability for
representing methods, can be used in an evolutionary way.
If a software project has already begun or has ever
progressed as far as the maintenance phase, if is still
possible to apply a method without expending excessive
effort to reformat the previously acquired information.
This capability was demonstrated by applying the TRIAD
multiple methaod environment to the TRIAD model
implementation after the development of the TRIAD
environment generator had already begun. If¥ references to

software source code can be easily isolated from existing



38

sources, say compiler control statements or even the source
language statements, then instances of the method Units
which represent modules can be created automatically. By
automatically creating the Units, the method is applied even
though it may be in a superficial way. In the future, as
the code changes, the appropriate Units can be filled in.
Over a period of time many of the modules would be
completely expressed in the method using this technique of
applying the method fully only to those elements of the
software which are being reworked. Although the effect of
this approach may be only local to the modules being
actively worked on, it is still a way to incrementally apply

a method without undue startup overhead.

1.5 CONTRIBUTIONS

This research contributions of this dissertation are:

o Specification of a single model for representing
multiple software engineering methods in a software life
cycle development process,

o Implementation of the TRIAD model for proof of concept
demonstration,

1] Evaluation of the model and its implementation for

multiple software engineering methods support andg



39

o Refinement of the TRIAD model through the creation of a
software engineering method consisting of multiple
methods to support the development of a large software

project.

1.6 ORGANIZATION OF THE DISSERTATION

The dissertation proceeds from an examination of
existing software engineering methods, of their current
computer support base and of their shared features which
must be integrated if they are to be used in a cqoperative
way within the software life cycle to a proposed model for
representing software engineering methods. Current research
is surveyed to isoclate important features for the
construction of a suitable model for software engineering
methods. The TRIAD model is implemented and demonstrated
using a multiple software engineering method derived from
the process of implementing the TRIAD model. An examination
of the results of the research concludes the dissertation.

Chapter Il explores the general nature of software
engineering methods by describing several popular methods.
The state of computer based support for these existing

methods is also discussed. From the survey of these



40

methods, the requirements necessary for computer based
support within the context of the software life cycle is
presented.

The TRIAD model is defined in Chapter III. The
features of the model as applied to software engineering
methods support are described in Chapter IV. Multiple
method support features of the TRIAD model are also
described in Chapter IV. Chapter V examines alternative
models and establishes why they are not as effective as the
TRIAD model for representing software engineering methods.

In Chapter VI the implementatian of the TRIAD model for
the TRIAD environment gererator is described. Use of the
TRIAD model features for software engineering methods is
illustrated by citing examples from the implementation.

A sample multiple method software engineering
environment generated by TRIAD is described in Chapter VII.
Chapter VIII concludes the dissertation by evaluating the

TRIAD model and its implementation.



CHAPTER 11

THE NEED FOR SOFTWARE ENGINEERING METHODS

As the cost and complexity of software development has
increased over the years, software engineers have been
searching for ways to manage the construction of software
such that a quality product can be built within schedule and
budgec¢ constraints and which satisfies the user. Software
written twenty years ago consisted of small programs which
ran on small expensive computers. The cost of the hardware
far exceeded the software development cost. However, now
the reverse is true. The cost of hardware has plunged while
its capacity has greatly increased. Further, more complex
problems are now being attacked because the computers are
more powerful. Software engineer’s salaries have increased
not only because of the inflation of the past decade, but
also because of the still chronic shortage of good software
engineers. High labor costs and bigger more complex
software have been the major contributors to the now higher
develaopment costs for software [BOEH84, YOURB&].

To effectively manage these growing costs and produce a
quality mroduct, software engineers turned to methods to

organize, assist and simplify the software development

41



a4

process. Methods were intended to do the following:

o Provide an ordered way of accomplishing a software
engineering task, thereby, moving software development
from an art to a science,

c Organize the information produced from the scftware
engineering task for easier processing and retrieval,

o Describe the software engineering problem and sclution
completely, succinctly and unambiguously,

o Suggest sclutions to the software engineering problem.
This aspect of a method takes advantage of previous
experience when a new problem is recognized as similar

to an older, already solved one,

o Produce good solutions,
o} Produce solutions faster than not using a method and
o Provide a basis for managing the software engineering

problem solving process. By using an ordered approach,
progress can can be quantitatively measured and the
process properly managed to insure reliable software is

produced on time and within budget.



43

2.1 SOFTWARE ENGINEERING METHODS

Over the past decade numerous software engineering
methods have been proposed to assist the software engineer
in building quality software. Several of the more popular
methods have been analyzed to obtain the requirements to
provide computer based support for these methods. Five
methods will be briefly described (SADT, Data Flow Diagrams,
Call Structure Cherts, Jackson Method and Flowcharts). A
single example will be used to illustrate the salient
features of all five methods.

A simple data processing application is used to
illustrate the software engineering methods. The exadple
software is a name and address file with the following
requirements:

1. Edit new name and address transactions,
2. Update the name and address file and
3. Produce reports and mailing labels.

Figure 4 shows how the high level processing of this

example is expressed using the Structured Analysis and

Design Technique (SADT) [ROSS77bl.



Transactions

Names &

Address
>

Edit

Transactions

Valid Transactions

A

[

Rules File

Update

Figure 4.

File

File

SADT diagram of the Name and

A 4

Generate Reporti

Reports

!

Report Formats

Address File System



45

Each box in SADT terminclogy represents a bounded
context. In this example, the bounded context is a
processing action. Arrows into the box from the side are
input, which in this example, the input is names and
addresses. Arrows out of the boxes are ocutput. Arrows into
the box from the top are controls, which are transaction
types in this example. Mechanisms are represented by arrows
into the box fraom the bottom. In this example, rules for
editing and the file of names and addresses are mechanisms
used to edit transactions. Each box and arrow is named with
a descriptive label. The purpose of SADT is to communicate
ideas which in this case is a software design. No more than
6 boxes are permitted on a single SADT drawing. If maore
than 6 boxes are needed, than the drawing must be
hierarchically organized. Each box in a drawing may be
expanded by creating a new drawing containing more detail.
Returning to the example, the second box, Update File, could
be expanded and all of the processing actions for each
transaction described on another SADT diagram.

Figure S5 is the name and address example defined using
the dataflow technique L[DEMA7?]. Dataflow Diagrams
represent software by showing the flow of data through
processing actions. Bubbles (circles) are used toc represent
a processing action and arcs between bubbles represent the
flow of data. Rectangles are used to represent sources and

destinations of data. A data store is represented by the



46

open ended rectangles. Labels are placed in the bubbles and

rectangles and on the arcs to describe them.



User

47

'

Name and
Address
File

Transact-

Validate

Error
Display

Figure 5. Dataflow Diagram of the Name

and Address File System

Reports
and Lists




48

Referring to Figure 3, transactions flow into the
validate bubble and are separated into valid and invalid
ones. The invalid ones are displayed for correction, while
the valid ones are separated into file update requests.
Depending on the transaction type, file updates are made,
otherwise the requested reports or labels are printed.

The Call Structure method shown in Figure &6 shows the
organization of the example into program modules. The main
program calls three submodules, Edit, Update and Report.
Each module is represented by a box. Arrows between the

boxes represent the calls relation between the madules.

4 Main Program

Edit Update Report

Figure 6. Name and Address System Call Structure



49

The Jackson Method represents the name and address
system as shown in Figure 7 [JACK78]. Data structures are
designed first in the Jackson Method and then used to define
the processing. The example system has a transaction and
data store as the primary data structures. Rectangles are
used to represent processing in the Jackson Method and lines
between the rectangles represent control paths. Within the
rectangles are labels to describe the processing. Three
different types of processing are represented in the Jackson
Method by slight modifications of the basic rectangle. If a
star (#) is placed in the upper right corner of the
rectangle then iteration is represented. The processing
indicated within the box is repeated until a stated criteria
is met. Iteration includes the programming constructs of DO
and REPEAT. Selection (choice) is represented in Jacksan
Method by a zero (0) in the upper right corner of the
rectangle. Each selection box represents one of several
choices. The IF statement in many programming languages is
used to implement the selection construct. Finally a box
with no special symbol in the upper right corner is a
processing action that is performed in sequence. The
sequence of operations is determined by reading the diagram

top down and from left to right.



Main Process
Transaction

Valid

30

S

re

Update File

Figure 7.

Invalid

Print Reports

Jackson Method Representation of the

Name and Address System



S1

In Figure 7, selection is used to separate the valid
from the invalid transactions at the first level and again
at the second to sepérate the file update transactions from
the report transactions.

The final method presented is the Flowchart. Figure 8
shows the name and address file system main processing loop.
Flowcharts use distinct geometric symbols to represent
processing options and storage entities. The symbols are
connected by arrows which represent the flow of control
through the symbols. The bax represent general processing.
Diamonds are decisions and cylinders represent storage
entities. Contained within the symbols are descriptions and
names for the actions represented by the symbol. For
example, in Figure 8, the decision diamond contains the test
conditions.

In the initial description of the name and address
example, the most common software engineering method was
used, namely natural language narrative. The requirements of

the system were specified as a simple list.



Start

52

lk

Read Trans.

Validate Transaction

Name and
Address
File

Display
Error

Produce Rpts
and Lists

Update File

Figure 8. Flowchart of the Name and Address File System



53

From this brief overview of several popular methods,
the following common properties concerning the

representation of methods emerge:

o Methods may be entirely textual,

o Methods may combine text and symbols and

o Methods may use graphs to represent the structure of
software.

Software Engineering methods are used more as a
representation of a solution than an actual problem solving
procedure. For example, Dataflow diagrams [DEMA79] and Call
Structure Charts [DAVIB3] represent the flow aof data through
a system or the Call Structure of a program, respectively.
As a representation of the program, they are effective in
providing an exact description of the problem. Ross makes
the point about SADT [RQOSS851, that the SADT diagrams serve
as a documentation of the software for review and agreement
by the project participants.

In addition to representing the form of the software,
methods also serve to describe it. Data flow diagrams name
the source, destination and the path for data elements.

They also allow descriptive information about the processing
to be recorded within the bubbles.

Other information about the model is also recorded in
some methods, such as creation date, revision name,
designer, etc. This data is important toc manage the use of

the method and describe the process of applying the method.



354

Finally, some methods go beyond representing the
program and actually assist the software engineer by
suggesting solutions or designs. Jackson Method [JACK781,
when properly applied, produces a design, rather than just

recording the representation of a design.

2.2 METHODS IN THE SOFTWARE LIFE CYCLE

The development of software is generally viewed as an
iterative process consisting of several phases. Although
many software life cycles have been proposed consisting of
differing numbers of phases,; the key idea is to partition
the software development process into distinct phases
(BIGGBO]. These phases have a distinct beginning and ending
and produce a document or product whose quality can be
evaluated and used as a basis to make a decision on
continuing the software development. A general definition
of the software life cycle consists of the following five
phases:

a} Requirements Analysis - Software development is
initiated by specifying the requirements the proposed
software is to satisfy.

o System Design — An overall design of the software is
created to meet the requirements defined previously.

o Program Design - The system design is further decomposed



55

into programs where the processing detail is specified.
o Coding and Testing - The program design is translated

into a computer language and the resulting code is

tested.
o Maintenance - Errors in the design and coding are
corrected.

The software life cycle is a convenient vehicle for
classifying methods. The first methods created were those to
support the coding and testing phase. This was probably
because the coding process was the best understood phase and
alsoc the easiest to support by computer tools since the
program source is stored in machine readable form. Example
methods for program coding include Flowcharting [DAVIB31,
Structured Programming [DAHL721, Pseudocode [DAVIB31l and
indentation techniques. The program design phase is
supported by methods including Jackson Design Method,
Logical Construction of Programs [DAVI83], and Modular
Design (both top-down and bottom-up). Methods such as SADT
[ROSS77a,R0S877b3, Logical Construction of Systems, PSL/PSA
[LTEIC77], Data Flow Diagrams [DEMA79], Gane and Sarrenson
Charts [DAVI83] and HIPO [DAVIB3] were created to support
the system design phase. The maintenance phase may use all
of the above software engineering methods since it is during
this phase that errors in design and coding are corrected.
The requirements analysis phase is supported by SADT and

SREM [ALF0831. Table 3 summarizes the many methods by



saoftware life cycle phase.

36



Table 3. Software Engineering Methods

by Software Life Cycle Phase

Requirements Analysis

- Requirements Statement

- Software Requirements Engineering Method (SREM)

- Structured Analysis and Design Technique (SADT)

System Design

- Problem Statement Language/Problem Statement
Analyzer (PSL/PSA)

- Hierarchy plus Input/Processing/0Output (HIPO)

- Structured Analysis and Design Technique (SADT)

- Data Flow Diagrams (DFD)

- Logical Design of Systems

Program Design

- PDL

- Jackson Method

- Structured Design

- Logical Design of Programs

Coding and Testing

- Structured Programming

- Pseudo Code

Maintenance

57



38

In addition to meeting the requirements for methods

stated in the previous section, these methods have several

common features:

o

Limited Form - Most of the methods use either graphical
representation (Flowcharts, DFD and SADT) or a precise
language (SREM and PSL/PSA) to organize the information
in the method.

Reflect the structure of the software - This is
particularly true for the system, program design and
coding phases.

Most of the methods support the development of the
software - In addition the methods provide information
about the process of software development. Other
uniquely management oriented methods such as PERT, CPM
and Gantt charts support the process of software
development management directly.

Most of the methods use a combination of textual and
graphical data.

The methods can be supported either partially or totally

by computer based tocols.



59

2.3 COMPUTER BASED SUPPORT FOR SOFTWARE

ENGINEERING METHODS

viany methods have no computer based support, which
makes the application of the method different fram the
majority of the work done in the software engineering
process, especially code development and testing. Since the
majority of the code development is done using a computer,
methods that can be used on a computer simplify the software
engineering process by providing a common access mechanism.

Further, computer based methods can take advantage of

already recorded information.

Several current trends indicate that computer support
for all methods is possible:

a} Use of wark stations (terminals or personal computers)
to do coding. The availability of ready computer access
encourages the use of computer based methods,

a} Availability and use of word processing software and
high quality printers to do documentation and reports.
This characteristic obviously encourages the storage of
all project related data on the computer systems, making
the use of methods for the text based phases more
accessible,

fu} The availability of high resolution graphics on the work

stations encourages the support of methods which employ



&0

graphical representations for organizing the information
contained in the method and

o Sufficient on-line storage to store large amounts of
textual data. For a collection of methods applicable to
all phases of the software life cycle, there must be
adequate storage to store all of the information on-line
as well as accommodate indexes to properly organize the
information.

These factors are necessary to construct a practical
computer based support package for software engineering
methods. Without a workstation for ready access to a
computer with the above characteristics, computer support
for methods is not helpful to the software engineer. The
computer acts as a central focus for the entire project and
makes it easy and natural to use computer supported software
engineering methods.

Existing computer based support for software
engineering methods is of two distinct classes, isolated
tools and method specific software. Tools by definition are
general purpose, single use utilities such as pretty
printers, sorts and searching programs, The best example aof
the tool approach is the Programmer’s Workbench on UNIX
C(DOLO781. Sharing a common file system, this tool collection
works well for specific operations. Complex aperations
require either parameters on the toocl invocation, the

coupling of more than one tocol together using the pipe or



61

user interaction controlled by the tool. If the tools are
not designed to use a similar interface then tool use
becomes difficult.

Methad specific software packages are just
that——-specific to the imbedded software engineering method
and not capable of being used to represent and apply other
software engineering methods. For example, SADT is
supported by IDEF, which i1s an editor and storage facility
for SADT diagrams. Tools such as IDEF store the method
representation of the software in a unique internal format.
To access the method specific infarmation available involves
writing new tools or coding an interface to translate the
information from the internal format to another standard
one. Further,; some of these method specific tools do not
have an open architecture to allow the interfacing of
external tools. It would not be feasible to apply tools
such as IDEF which is gspecifically designed for SADT, on
other methods such as Jackson or dataflow.

Methods, such as PSL/PSA, use database management
systems to store and manipulate the information in the
method. For many methods, databases are unsuitable because
they are designed for fixed format, transaction based
processing. EKENT79]1 Even though a database may use a
graphical data model such as the hierarchical or network
model, it is often incapable of displaying the data

graphically. Since many software engineering methods are



b2

graphical representations, such as SADT, Dataflaow Diagrams
and Call Structure charts, a graphical view is essential.
Syntax directed editors support a class of editing
methods. Editor generators, such as ALDE, allow the user to
specify the language syntax, for which the ALOE creates a
structure editor. Any text entered using a structure editor
is stored in the form of a parse tree. Action routines
provide a means for implementing constraints on the language
entry and do syntax checking. The problem with ALOE and
other syntax directed editors, is that their support is
primarily of one phase--coding. If a software engineering
method is not in the form of a language then the method
cannot be directly specified. Another drawback to structure
editors is that the person doing the editing must constantly
think of the text in terms of the parse tree imposed by the
language for which the editor is designed. For complicated
languages, complicated structures will result, making the
editing process more difficult. Further,; the structure of
the text may not be as important as the content of the text.
Support for software engineering methods requires
computer based support beyond isolated tools or support
packages. The computer based method has to keep track of
the software engineer’s actions and be able to relate
different pieces of information together to assist the

software engineer.



63

The following features are necessary for computer based
support of software engineering methods:
o Storage of information,
- Fixed format,
- Textual,

- Graphical,

o Represent the structure of the method,

o Capture the meaning of the method structure,

o Praovide extended commands to do custom processing,
o Control access to stored information,

o Allow multiple user access and protection of

information,
o Maintain versions of method applications and
o Interface to existing tools.

The initial benefit of applying a method is the
organization of the information into a structure that can be
analyzed and used as a basis for communication between
project members. To this end, computer based method support
must be flexible enough to support different types of
methods. Support must be provided for methods that are
largely collections of text for documentation, requirements
specification or module processing descriptions. Fixed
format data support is necessary for methods that collect
management data such as time and caost expenditures.

Finally, representation of graphical methods is required to

support the software engineering methods that represent



&4

designs and project progress as graphs. For instance, system
structure, Dataflow Diagrams, Jackson, SADT and PERT charts
all use graphical representation.

The representation of software engineering methods
should be general enough to not only be re-usable for
different and new methods, but also to allow customization
and refinement of the method as experience is gained while
applying the method. For example, IDEF is a customized SADT
method applied to manufacturing problems. The
representation used by a computer based software engineering
method should closely resemble the model the method uses to
represent the software or the process of software
construction. This is impartant from a human engineering
standpoint. If the computer based support uses a graphical
representation, then the graphical methods can be easily
represented. Further, the software engineer applying the
method will not have to translate between the method
representation and the support representation for the
method.

Going beyond just representing the structure of the
method, the model should provide the means for capturing the
meaning of the structure. For example, Jackson Method
specifies three different types of processing boxes
(sequence, iteration and selection) which are distinguished
by symbols placed in the upper right hand corner of the box.

The method designer should be capable of differentiating



63

between the structures énd also the meaning of the
structures. Selection involves choosing only one of a
series of boxes which are subordinate to the predecessar box
while sequence performs the processing actions of each
subordinate box serially.

Extended commands facilitate the customization of
computer based support for methods. By allowing the
software engineer to implement extended commands, it is
possible to anticipate the processing needs af the person
applyina the method. In addition, extended commands
implement processing which is peculiar to a particular
method the processing can be invoked by a single name.

In addition to the extended commands, the computer
based support must provide a gquery language to retrieve,
digplay and refarmat the information organized by the
software engineering method and stored by the support
package. Queries can be either built on demand from
primitives or predefined and stored as extended commands.
The software engineer applying the method, invokes the
extended commands by specifying the command name.

Besides the organization of information describing
software, a method also contains the steps for successfully
using the method. Therefore, the support package should
include a means for writing instructions to guide the
software engineer applying the method. Guidance can take

the form of restricting access to information in parts of a



&6

method until preceding steps are praoperly concluded. For
example, the coding may not begin on a module until its
design is completed. The need for this feature varies from
method to method and the restrictions on access must be
specified when the software engineering method is defined.
Further guidance may require the method applier to
completely fill out all descriptions of the symbols before
defining another processing action.

The majority of software engineering methods are aimed
at large software projects, which have several software
engineers working together, thus, the support package must
allow multiple user access to the method and its
information. At the same time, to maintain the integrity
and privacy of the data, sufficient controls must be
enforced. This problem is identical to the access problem
in database management systems and ;s therefore solved by
making use of the solution for database management systems.

The constructicn and management of software is an
iterative process. Not only is it iterative, but often it
is necessary to backtrack and return to an earlier design,
plan or code implementation. To support this feature a
support package must allow different versions of a method
application to be maintained and easily retrieved for

examination.



&7

To avoid extensive recoding of tools for a method
application, a flexible interface to existing external tools
is necessary. This implies that the environment must have
an open architecture for its storage and retrieval
mechanism, It must also supply processing primitives for
accessing the storage facility and a convenient way for
invoking the external tools that are interfaced into the
environment.

.The advantage of using a model that facilitates
computer based support for methods is the ability to
represent most methods--existing and new. In addition, the
common interface provided by the method support package
minimizes the amount of effort involved in applying a new
method. The alternative of providing method specific
computer support for each method, is to create a different
interface for each method used. This approach would
complicate rather than facilitate the use of multiple

methods on a project.



68

2.4 ENVIRONMENTS TO SUPPORT SOFTWARE

ENGINEERING METHODS

An environment is more than just a synonym for the
computer and its operating system. An environment
encompasses everything affecting the users’ work. This
includes the lighting, temperature, furniture, hardware and
software characteristics. In this dissertation, environment
will mean the software, which includes the operating system,
the text editor, file system, utilities, tools, database
management system and any other software the software
engineer uses to accomplish his work.

The necessary elements for an environment for saftware
engineering method support are:

o An editor for manipulating text,

o A storage and retrieval mechanism for access to the
information collected during the application of a
method,

o A model for representing the method which is flexible
enough to represent the structure embodied in many

Iy

different methods (hierarchy, network and directed

graphs),
o A consistent interface to all software engineering

methods to minimize the effort required to learn the use

of a new method,



&9

o A tool interface,
o Support for the enforcement of software engineering
method application and
o Support for project control and management activities.
af these elements, most are dependent on the host
computer systém. Even the text editor should be or resemble
the one available on the system to minimize the amount of
training necessary for new users of the environment. The
storage and retrieval mechanism is not directly used by the
user except for the query language. Therefore, the most
important requirement for an environment to support methods
from the view point of this dissertation is the model used
to represent the methaod. It must be general enough to
represent most if not all methods and yet be capable of
being tailored to represent specific methods easily.

Since most methods are primarily used to represent
software, an appropriate model for methods must be capable
of representing software structures. The model must capture
the organization of the concepts in a way that is consistent
with the method. For examples, if the method uses a network
to represent the Call Structure of a program, then the model
must support the representation of networks.

Environments to support methods differ from tools and
method specific support packages for methods primarily in
scope. The environment provides support for all aspects of

the method while a tool may provide support only for a



70

single activity. Pretty printers are good examples of
tools. They reformat an existing collection of text.
However, they do not support the editing or entry of the
text, nor do they provide assistance in the interpretation
of the text. Method specific packages only support one
method.

It is important to differentiate the concept cof
assisting the software engineer to create software from that
of automatic program generation. Assistance leaves the
creative decisions to the software engineer, but it tries to
make available to the software engineer all of the
information necessary to make the decisions. The assistance
provided to the software engineer must be centered around
the software engineer’s current activities or focus of
attention. In terms of computer based environments, the
focus of attention is the terminal screen. Thus, the
effective methods and environments that apply these methods,
must organize information on the screen so that the software
engineer can efficiently do the work of software
construction.

Assistance éan still be intelligent and do rule-based
reasoning, but the ultimate decision is made by the software
engineer. The best application for intelligent assistance
is the summarization of pertinent information contained in
other places so that the summary information can impact the

ultimate decision. Intelligent assistance includes checking



71

all of the rules for the application of a method to ensure
that the software engineer does not violate any. For
instance, SADT requires that any diagram can contain only 6
boxes. If the software engineer creates a seventh box then
the environment should inform the engineer of the rule
violation and suggest an alternative action.

To support many different methods, environments must
either have the software engineering method hard coded into
them or provide a feature for method specification. This is
analogous to the relationship between files and databases.
In databases the data model is used to create a
representation of the data relationships, which is a
separate process from actually entering,.storing and
retrieving data.

The same is true with environments. First the method
(or methods) must be described in terms of the model. The
environment can then be used to apply the method to an
actual software design and implementation problem.

Beyond just representing the method, the environment
must assist the software engineer in applying the method.
This assistance can be done in several ways. The
representation and flexibility of the model to represent
many different types of methods is passive and limited to
the model chosen to represent methods. In this case,
assistance to the software engineer is provided merely by

the power of the model to represent the methods and support



72

them on a computer. Active assistance is provided when the
environment can organize the method tasks for the software
engineer. This organization relates not only to the
information organized by the method, but also the placement
of additional infaormation or references to it for easy
access. For example, links can be used by the environment
to associate related pieces of information that may not be
stored adjacently. Data flow diagrams are drawn at varying
levels of detail. Links between the general level and the
detailed level provide a fast means for an environment to
access the information stored at the two levels. Further
the available commands should be arranged such that the
software engineer can select the next command based on the
current caontext. This further implies that only those
commands that are applicable based on the current context
can be selected. The environment should provide an easy
means for integrating external tools. Also the invocation
of the tools should be done automatically based on fhe
software engineer’s context within the method. If the
method has rules or procedures for operation, then the
environment should provide facilities for encading the
procedures such that as the software engineer applies the
method, the environment can apply the procedures based on
previous input and modify existing information as well as

synthesize new information.



73
2.5 ENVIRONMENTS TO SUPPORT MULTIPLE SOFTWARE

ENGINEERING METHODS

In addition to the computer—-based support requirements
for software engineering methods, the following features are
necessary to support software engineering methods within an
environment:

o Mechanisms for relating information and structure
between software engineering methods and
o Common storage representations.

Methods now exist to support each phase of the software
life cycle. However, methods vary widely as to type
(graphical as opposed to textual) and often are incompatible
with each other. Further, a method used in one phase may
not produce output suitable for use by a different method in
the next phase. For instance, SADT used in the system
design phase produces diagrams which cannot be directly
translated into Jackson Method program designs.

Since the methods are not compatible phase to phase,
there is a tendency by software engineers to only apply the
method during the initial iteration of the software life
cycle. If a requirements change is proposed during the
system design phase, the likelihood is that its impact will
be strictly on the system design and it will not be applied

to the requirements analysis method to insure consistency



74

and caompleteness with all of the other requirements. The
greater the distance between the phases in which the error
was found and the phase in which it was made, implies a
greater loss in information. This tendency also undermines
the documentation value of the method as a representation of
the design, if the method is not being re-applied and
updated as changes occur.

An environment should be capable of handling all the
methods used during the software life cycle to create
software. The ability to capture the information created
during each phase of the software life cycle and apply it to
the subsequent phases is necessary to provide complete
computer based support to the software engineering process.
An obvious solution to this problem is to create a new
integrated method which can support each of the software
life cycle phases. Not only is this a monumental task, but
several of the existing methods are good for specific
software engineering tasks and have been used successfully.
Building an integrated method that is effective for all
phases and consistent in use may be impossible considering
the diverse activities involved involved in software
specification, design and coding. An alternative solution
is to provide an environment to uniformly support different

methods in the software life cycle.



75

Further, providing a common interface to all the
methods greatly strengthens the value of the methods to the
overall software development process. In additian to
sharing, the information can be propagated; which eliminates
unnecessary copying of data and insures redundant
information will be accurate. A common model for
representing the methods also opens up the possibility of
analyzing the results of method applications between
software life cycle phases. For example, the ability to
make sure that all requirements are met by software designs
and implementation can be accomplished by linking
requirements and their satisfying modules together between
methods. A toaol can then check and make sure that all
requirements are paired and generate a report listing the

pairings.

2.6 RERQUIREMENTS FOR SOFTWARE ENGINEERING METHODS

This chapter has presented several software engineering
methods to isolate these features of the methods that must
be supported by a model for methods. Four basic
requirements must be met to build a model for software

engineering methods.



76

o Represent the method structure,
o Encapsulate the meaning of the structure,
o Provide the capability for expressing the rules and

procedures of the method use and

le] The model must be capable of being easily implemented on
a computer so that computer based support can be
supplied to these methods.

The structure of the method refers to the elements of
the method, such as the boxes of the Jackson Method and the
SADT Method. Also the model must be able to represent the
connections between the elements, such as the lines of the
Jackson Method or the arrows of the SADT Method. These
elements are used to structure the softwére and the model
must be flexible enough and robust enough to easily allow
the expression of a variety of methods.

The meaning of the structure is the semantics of the
arrangement of the method elements. For instance, the
arrangement of subroutines into a hierarchical Call
Structure means that if two modules a2re connected then aone
of the modules is above the other in the diagram. The model
must be able to represent this meaning, too.

In addition to describing elements for representing
software, most methods include rules which describe how the
software is transformed into the elements of the method.
For example, SADT requires that at most six boxes may be

contained on any single page of an SADT Diagram. The model



77

must accommodate the specification of such ruless so that
the method can be correctly applied.

To facilitate the application of software engineering
methods, the model must be amenable to easy implementation.
This requirement extends computer support to existing
methods that are currently unsupported or undersupported.
It also provides the potential for computer support for new
methods as they are created.

Further, representing the structure of software
engineering methods, requires the following:

o Chunking of concepts,
o Representation of the connection of cancepts (chunks)
together as a directed graph. The connection should be

capable of representing trees, hierarchies and networks,

o Storage of text blocks,

o Storage of attributes of the chunks,

o Procedures to perform processing of stored information,
o A Ruery Language to locate information based on the

structure and content of the method and
o Secondary Links to represent relations between method
concepts different from the primary connections of the
method.
Most software engineering methods attempt to provide
either a caompact notation for the software or an organized
structure for the software. The elements of the method

(notation or structure) allow for the concepts of the method



78

to be '"chunked" or aggregated. The model must provide a
component to represent these '"chunks”.

Structure implies connection, so the model must allow
the concepts to be connected and arranged into a meaningful
structure embodied by the method. Numerous examples of these
connections from software engineering methods have already
been cited, most of which are arrows or arcs, but
indentation in an ocutline is another way to organize or
connect concepts in a text based method.

To support text based methods, the model must allow the
inclusion of arbitrarily long sequences of text. At the
other extreme, the model must allow for the definition and
storage of attributes which describe the concepts of the
method. For example, management methods, record dates,
program sizes and percentages, all of which must be steored
precisely for fast retrieval and manipulation.

Finally, a facility for building procedures to process
the information represented by the method must be provided
to build tools to translate the information to external
sources or to other methods, or do local processing.

To effectively support the software engineer using a
method expressed in the model, a gquery language is essential
to locate information organized by the method. This
requirement becomes more important as the size of the

software represented by the method grows.



79

The following list of implementation requirements not
only are characteristics of good software, but are necessary
for a model to represent methods, if the resulting

implementation is to be useful.

o Easy to use interface,

o Efficient and fast storageAand retrieval of Entries and
Units,

o Graphic views of Units and their Refinement Link

structures,
o Robust and easy to use text editor and
o Flexible tool interface.

A good interface will allow the software engineer or
application area specialist to use the model implementation
easily with little training. An easy to use system will
make the value of the model implementation greater.

A storage and retrieval mechanism can be used to store
the elements of the TRIAD model. The mechanism can range
from a B-tree scheme to a full featured database management
system. However, the storage and retrieval mechanism must
be efficient enough to accommodate method applications for
large pieces of software. The response time must be fast
enough to allow the software engineer to work without
waiting for responses. A storage and retrieval mechanism
should allow the implementation to support version control

and multi-user access to a method use and method definition.



80

The efficient storage of the method structure and
information contained within the structure, ensures that
queries concerning the software in the method will be
quickly answered. As with the interface, good response
increases the likelihood that the model implementation will
be used.

A package to provide graphic views of graphical methods
such as Jackson, SADT or Dataflow Diagram is essential for a
software engineer to use these methods with the model
implementation. In addition to merely presenting a graphic
view, the implementation should allow the user to manipulate
the view directly which will result in the changes being
recorded in the method representation.

The text editor is necessary for those methods which
are largely textual, such as requirements or documentation
methods. If the text editor is or resembles the standard
one available on the host computer system, the user will be
able to quickly begin entering and modifying the text in the
method.

Finally a flexible tool interface is required to
exploit existing tool support for some methods. The
interface should contain primitives for extracting
information from the method, as well as providing controlled

invocation of the tool from the model implementation.



CHAPTER II1

TRIAD MODEL DEFINITION

The preceding chapter provided the mativation for
creating a model to represent software engineering methods,
In addition, a brief description of the TRIAD model was
presented in Chapter I. This chapter gives a precise formal
definition of the two major components of the TRIAD madel
tagether with a description of the primary operations which
the system provides for defining and using software

engineering methods.

3.1 THE TRIAD MODEL

In order to support a variety of software engineering
methods, the TRIAD model must have two components. The
first component is a high level system which is used to
specify particular methods such as the Call Structure
method, the Jackson Method or the Dataflow Diagram Method.
It is called the Method Definition Component and it allows
the method definer to specify the names and general
structures of the various general classes and categories of

ocbjects to be used in a particular method.

81



82

The second component of the model is a lower level
system, the Method Use Component, which is used to
manipulate individual usage instances of a particular
method. It might, for example, be used to design a payroll
program following the Jackson Method.

This division into two components is analogous to a
similar division employed in databases. The Method
Definition is analogous to the database schema, while Method
Use is analogous to the storage and retrieval of data

according to the schema.

3.1.1 THE TRIAD METHOD DEFINITION COMPONENT

A common feature of all software engineering methods is
that they identify a small number of primary objects which
are used to describe software. These objects would be the
bubble and box of the Dataflow Diagram or the box of the
Jackson Method. TRIAD uses the term Unit Class (UC1l) to
describe these objects. Figure 9 shows the formal
definition of the Method Use portion of the TRIAD model.

The Unit Classes are represented by the set in the upper
right corner of the figure which is labeled UCl. Operations
will be provided which allows a method definer, analogous

to the database administrator, to identify the particular



83

Unit Classes which a method will use. One of the Unit
Classes is designated as the Initial Unit Class to ensure
that the network of Unit Classes is created properly. The
Initial Unit Class (IUCL) is shown in the figure as a point

contained within the set labelled, UCL.

IUCI1

Next_Category'

Class_for

Cat_Refines_to

Figure 9. Method Definition Component of the TRIAD Model

Typically these Unit Classes will contain subcomponents
such as the labels contained within the boxes of both the

Dataflow Diagram and the Jackson methods. These labels



84

describe the processing that the boxes represent. These
subcomponents are identified in the TRIAD method definition
system as Component Categories (CCat) and are represented in
Figure 9@ by the set labeled CCat in the upper left hand
corner of the figure.

Each Component Category, y, belongs to a particular
Unit Class,s, s. This is formalized in the TRIAD madel using
the Class_for function, which is shown in the figure as the
arrow fraom the CCat set to the UCl set, and which is written
as Class_for(y) = 5. The model is constrained such that
each Component Categorys ys must map to some Unit Class, s.
The Component Categories within each Unit Class are ordered
by the sequence in which they are created. The Next_CCat
function, which is shown in the figure as the circular arrow
from the CCat set to itself, maintains the segquential order.
That x is the next Component Category of a Camponent
Category y is then denoted by Next_CCat(y) = x. The
following constraint ensures that the Next_CCat function
within a Unit Class points to only one Component Category
and that the Component Categories do not precede each other.
For all x and y in CCat, if Next_CCat(x) = Next_CCat(y) then
x = y and Class_for(x) = Class_for(y) iff there exists an

integer k such that Next_CCat % (x) = y or Next_CCat *



83

Each Unit Class has at least one Component Category
which has the same name as the Unit Class and is used as a
repository for information about the entire Unit Class
rather than just a single Component Category. The notion of
a Component Categoary is formalized by the function
First_CCat which gives the first Component Cateqory for each
Unit Class. Note that if s 1s a Unit Class and
x = First_CCat(s) then Class_for(x) = s. In addition, to
ensure that x is truly the first Component Category in the
Unit Class, there is a constraint that for all y in CCat, if
Class_for{y) = s then Next_CCat(y) + X o

A Method Cursor labelled Cm, which is shown in the
figure as a point within the CCat set, contains the current
Component Category and provides a reference point for the
method definer. The value of the cursor is changed by an
operator which is used to navigate through the method
definition.

The Attribute Name set defines the names of attributes
which are used to hold descriptive information about the
objects of the method. The Attribute Names are associated
with a Component Category and in addition each Attribute
Name has an associated Type Definition given by the
Type_Def_of function shown in the figure as an arrow from

the AN (Attribute Name) set to the TD (Type Definition) set.



86

For each AN, t, and TD, d, the function is formally defined
as Type_Def_of(t) = d. Each Attribute Name, t, is
associated with a Camponent Category, y, by the function
Cat_of_Attr which is shown as the arrow from the AN set and
to the CCat set in the figure and is formally defined as
Cat_of_Attr(t) = y. This function associates the Attribute
Names with the correct Caomponent Categories.

The objects in software engineering methods are usually
interconnected in various ways. In the case of the Jackson
and Dataflow Diagram Methods, the boxes are connected by
lines or arcs. In text based methods such as a
documentation methods and requirements methods, the objects
(descriptions) are typically connected a&cording to their
position in an outline thereby creating a hierarchy of
objects. The TRIAD model represents these interconnections
using the Refinement Linkage. This relation is from a
Component Category, Y, to a Unit Class, S, and is shown in
the figure as the fat arrow immediately below the Class_for
arrow. The relation is formally defined as
Y Cat_Refines_to S.

In addition to the Refinement Linkage, other Secondary
Linkages may be necessary to represent other relationships
between the objects in the method. For example, both

Jackson and the Dataflow Diagram break the processing into



87

smaller pieces. At some point these pieces need to be
combined into a program or into several modules, if the
software is large. In the TRIAD model, Secondary linkages
can be created between the first Component Category (which
represents the entire Unit Class) to represent the grouping
into modules. The Secondary Linkages are shown in the
figure as the set labeled LN, Link Names. Between the LN
and CCat are two arrows representing the domain, Dom_of
function, and codomain, CoDom_of functions, for the link
name. For a Link Name, n, and two distinct Component
Categories, x and y, the functions are formally defined as
Dom_of(n) = y and CoDom_of(n) = x.

In addition to the objects of a saftware engineering
method, rules and procedures are provided to manipulate
these objects according to the intent of the method. These
rules are represented in the TRIAD model by procedures
written in a programming language. The name and conditions
under which these Procedures are to be invoked is associated
with the Component Categories. The Procedure References are
shown in the figure as the set PR in the lower left hand
corner. The function Proc_for, shown in the figure as the
arrow from the set CCat to the set PR, defines the Procedure
Reference, p, for a Component Category, y, formally as

Proc_for(y) = p.



Table 4 gives a formal definition of the Method

Definition part of the TRIAD model.

88



89

Table 4. Formal Definition of the TRIAD Model

Method Definition Component

A method M is defined formally by a 17-tuple:

M=(CCat, UC1l, IUCL, Next_Category, Cat_Refines_to,

Class_for, First_Cat_of, LN, PR, AN, TD, Type_Def_of,

Dom_of, CoDom_of, Proc_for, Cat_of_Attr, Cm)

1.

CCat ¢ ch_strings is the set of Component Category names
used by the method,

UCl c ch_strings is the set of Unit Class names used by
the method,

IUCL € UC1 is the Initial Unit Class,

Next_Category: CCat —-> CCat sequences the Component
Categories for each Unit Class,

Cat_Refines_to ¢ CCat X UC1 is a relationship which
determines which Unit Classes a Component Category can
refine to,

Class_for: CCat -> UCl1l determines the Unit Class each
Component Category belongs to,

First_Cat_of: UCL -> CCat identifies the initial
Component Category for each Unit Class,

LN ¢ ch_strings is the set of Link Names,

PR ¢ ch_strings is the set of Procedure References for

the Component Categories of the method,



Table 4 (continued) 90

10. AN ¢ ch_strings is the set of Attribute Names used in
the method,

11. TD ¢ ch_strings is the set of Type Definitions,

12. Type_Def_of: AN -> TD determines the type definition for
each Attribute Name,

13. Dom_of: LN -> CCat determines the Domain Component
Category for each Link Name,

14. CoDom_of: LN -> CCat determines the CoDomain Component
Category for each Link Name,

15. Proc_for: CCat -> PR determines the Procedure Reference
for each Component Category,

16. Cat_of_Attr: AN -> CCat tells which Component Category
each Attribute is associated with,

17. Cm € CCat is the Cursor for the method and points to the
Component Category currently being manipulated during

method definition.

3.1.2 THE TRIAD METHOD USE COMPONENT

Technically, the method definition M provides a sort of
template into which the particular software desired must be

fitted. This is done by creating a variety of instances of



91

the Unit Classes, Component Categories, etc. which were
identified in the method definition. This process results
in a set U of Unit Class instances which are called the
Units of the particular method use. Similarly, the set C of
Component Category instances will be called the Components
of the method use and so forth.

As an example, if a software engineer is applying the
Dataflow Diagram Method, then there will be a Unit Class
"Processing Box" identified in the metbhod definition. Each
time he wishes to add a processing box to the software he is
describing, he will ask the system to create a new Unit of
the "Processing Box" class. If the software consisted of a
source of data, two processing boxes and.a data store, then
four Unit Class instances would be created--one instance of
the Unit Class "Source", one instance of Unit Class "Store”
and two instances of Unit Class "Processing Box". An
instance of a Unit Class automatically creates instances of
all the Component Categories, Attribute Names and Link Names
and the software engineer can use these to supply the
details about the particular Unit.

The full TRIAD model is fairly complex and is depicted
in Figure 10. The top part of the diagram, above the thick
horizontal line, repeats the method definition given in

Figure 9 while the lower portion of the diagram lays out the



o2

elements needed to describe a method usage. After a software
engineering method has been translated into a TRIAD method
using the Method Definition System, then the TRIAD Method
Use System is available to create particular software

documentation following the method defined.



12POW AYIHL 0T ®anbry

JoTuun

s

0~ IUSWIUI]IY

Method Use

Method Definition

Category_of

Link_Name_ol

argel_of

e Ty _Of

o1 saurgey 1e)

5
S

Attr_Name_ofl

Class_of

[ON1

Es



94

The use of a method is begun by the creating an Initial
Unit which is in an instance of the Unit Class designated as
the Initial Unit Class.  For example, in the Dataflow
Diagram Method the first symbol is a "source" for the
program’s data. The Initial Unit will, of course, be a
member of the set of all Units which are represented in
Figure 10 by the set U in the lower right corner. The
Initial Unit Class (IUCL) is the point contained within the
set U. The Class_of function shown in the figure as the
arrow from the set U to the set UC1l in the Method Definition
portion of the figure records for each Unit created the Unit
Class of which it is an instance. If Unit u is an instance
af Unit Class S, then formally, Class_of(u) = s. A
constraint on the model that the Initial Unit, IU, must be
an instance of the Initial Unit Class is given formally as
Class_of(IU) = IUCL.

Whenever a Unit is instantiated,; new instances of all
its Component Categories are created and added to the set C
of Components. A "label" describing the contents of a "box"
is an example of a Component in the Jacksan Method or
Dataflow Diagram Method. The Component represents the
"label" for each box represented by a Unit instance. To
record that Components, ¢, belong toc particular Units, u,

the Unit_of function is included in the model so that



95

Unit_of(c) = u. This function is shown in the figure as the
arrow from the set C to the set U. Each Component c is
created as an instance of a Component Category y and the
model records this association by Category_of(c) = y. The
Category_of function is the arrow on the left side of the
figure from the set C to the set CCat. To maintain the
consistency of the method use with the method definition,
the category of the component must always belong to the same
Unit Class as the Unit to which the Component belongs. For
a Component, ¢, this constraint is formally defined as
Class_for (Category_of(c)) = Class_of(Unit_of(c)).

Certain software engineering methods include components
which actually contain an arbitrary number of entry items.
For example, a project management method would allow an
arbitrary number of programmer name entries in the '"author"
component of a "Module" Unit. in the TRIAD model then each
Component Category may be replicated to permit sequences of
method subcomponents. In the method use, Entries are
created for each element in a sequence of subcomponents. At
least one Entry is created for each Component. An example
of the subcomponents in a method is the flow of data between
symbols in the Dataflow Diagram. Data may go from one symbol
to several other symbols. Each flow would be represented by

a separate Entry. The Entries are shown as the large set in



6

the middle at the bottom of the figure and is labelled E.
The ownership of an Entry, e, by a Component, c, is denoted
by the function Component_of, which is formally written as
Component_of(e) = c. The function is shown as the arrow
from the set E to the set C.

The Entries are in order in a component based on the
order they are created. The function Next_Entry, which is
shown in the figure as the circular arrow from the set E and
to the set E, provides the means for navigating through the
sequence of Entries in a Component. The function is
formally defined for two adjacent Entries, e and f, as
Next_Entry(e) = f. The following constraint ensures that
the Next_Entry function within a Unit points to only one
Entry and that only one entry precedes the other. For all e
and f in E, if Next_Entry(e) = Next_Entry(f) then e = f and
Component_of(Unit_of(e)) = Component_of(Unit_of(f)) iff for
some integer k,; Next_Entry (e) = f or Next_Entry (f) = e.

Attributes may be associated with each Entry according
to the association of Attribute Names and Component
Categories in the method use. For example, an Attribute
Name was defined for the Jackson Method and Dataflow Diagram
method to contain the symbol descriptions. The instance of
the Attribute Name, the Attribute would contain the actual

text describing the instance of the symbol represented by



7

the Unit Class. The attributes are shown in the figure as
the set labelled A in the middle at the right side. The
function Entry_of, shown in the figure as an arrow from the
set A to the set E, associates the Attribute, a, with an
Entry, e, and is formally defined as Entry_of(a) = e. Shown
in the figure as an arrow from the A set to the AN set in
the method definition portion of the figure, the function
Attr_Name_of establishes the correspondence between the
Attributes, a, and the Attribute Names, t, and is formally
defined as Attr_Name_of(a) = t. The values of the
Attributes are contained in the set Attribute Values shown
in the figure as the set labelled AV located above the set
labelled A. The function Attr_Val_of shown in the figure as
a label from the A set to the AV set, establishes the
mapping from Attributes, a, to their Attribute Values, v,
and is formally defined as Attr_Val_of(a) = v. Each of the
Attribute Values must in turn have a type, which is defined
py the Type_of function shown in the figure as the arrow
from the set AV to the set TD in the method definition
portion of the figure. This function is formally defined as
for each Attribute Value, v, there is a Type Definition:. d,
such that Type_of(v) = t. To maintain the consistency
between the method definition and the method use, two

constraints are needed. The first constraint ensures that



o8

an Attribute, a, associated with an Entry in a Component has
that Attribute Name related to the same Component Category
that is mapped to the Component and is formally defined as
Cat_of_Attr (Attr_Name_of(a)) =
Category_of (Component_of(Entry_of(a))). The second
constraint ensures that an Attribute, a, has an Attribute
Value whose T;pe Definition is the same as that of the
Attribute Name and is formally defined as
Type_Def_of (Attr_Name_of(a)) = Type_of(Attr_Val_of(a)).
Refinement Links are shown in the figure as the arrow
from the set E to the set U. The Refinement Link in the
method use is an instance of the Refinement Linkage defined
in the method definition. The Jackson and Dataflow Diagram
Methods have arcs between the symbols which in the method
definition are represented as Refinement Linkages from a
Component Category to a Unit Class representing a symbol.
In the method use, the Refinement Links are from an Entry,
belonging to a Component in a Unit to another Unit, thus,
representing the flow of control or data from one symbol to
another. The function is shown in the figure as an arrow
from the set E to the set U and is formally defined as for

an Entry, e, there may exist a Unit, u, such that

Refinement_of(e) = u.



99

In the same way that the contents of the Units must
conform to the contents of the Unit Classes, the Refinement
Links must be created in conformity to the Refinement
Linkages in the method definition. For all e in E and for
all u in U, if there is a refinement from e to u then the
Component Category of the Component which contains the
Entry, e, must be related to the Unit Class which the Unit,
us is an instance. This constraint is formally defined as
if Refinement_af(e) = u, then
Category_of(Componeﬁt_of(e)) Cat_Refines_to Class_of(u).
Units can not refine to themselves which is formally defined
as Refinement_of(e) * Unit_of(Component_of(u)).

The Is_Predecessor_of relation is defined to determine
if two Units, u and v, are directly connected by way of a
Refinement Link. If u is the predecessor of v then ‘there is
an Entry in the Unit u which refines to the unit v. This
relation is formally defined as u Is_Predecessor_of v if and
only if for some e in E, Refinement_of(e) = v and
Unit_of(Component_of(e)) = u. To ensure that all units
except the Initial Unit are refined to by at least one
Entry, there must exist an integer k for all units such that
through k applications of the Is_Predecessor_of relation,
the Initial Unit can be reached. This constraint is

formally stated as IU Is_Predecessor_of *“ u.



100

Secondary Links can also be created between Entries
according to the Link Names defined in the method
definition. These Secondary Links may be used to connect
processing symbols together in either Jackson or Dataflow
Diagram for example, into modules. An actual link instance
is created from the Link Name according to the function
Link_Name_of which is shown in the figure as the arrow from
the set L, representing the Links, to the set LN,
representing the Link Names. The function is formally
defined for each Link, 1, there must exist a Link Name, n,
such that Link_Name_of(l) = n. The functions Source_of and
Target_of provide the mappings of the Link, 1, for the

source and target entries of the link to the Entriess e,d,

which are formally defined as Source_of(l) = e and
Target_of(l) = d. These functions are shown in the figure
as two arrows originating from the set L to the set E. To

ensure that the links conform to the Link Name in the method
definition which is mapped to from the Link, a constraint is
placed on them such that the Source_of and Target_of
functions must map to Entries whase Components are of the
same Component Category as that specified by the Dom_of and
Codaom_of functions from the Link Name. This constraint is
formally defined for all 1 in L,

Category_of (Component_of(Source_of(l1))) =



101

Daom_of (Link_Name_of (1)) and
Category_of(Component_of(Target_of(l1))) =
CoDom_of(Link_Name_of(l)). A further constraint is that
only one Link with the same Link Name can have the same
source and target entries. This constraint is formally
defined for two Links, k and 1, as

if Source_of(k) = Source_of(l) and

Link_Name_of (k) Link_Name_of(1l) or

if Target_of (k) Target_of(l) and

Link_Name_of (k) Link_Name_of(l) then k = 1.

As in the method definition, a Cursor, Cr, is used to
maintain a current position within a method use. The figure
shows the method use cursor as a point within the set E.
This cursor always points to an Entry and is used as the
target entry for the method use operators requiring a
target. When a source entry is also required by a operator,
the Mark Entry, Me, represented by the other point within
the set E is used.

The formal definition of the TRIAD model method use is
given in Table S. The constraints upon the TRIAD model are

formally defined in Table 6 which follows the table

containing the method use fTormal definition.



102
Table 5. Formal Definition of the TRIAD Model
Method Use Component

A Method Use S is defined for a method M is the 22-tuple:

S=(Es U, IU, Cry, Me, Next_Entry, Refinement_of, C, Unit_of,

L, Ay, AV, Category_of, Class_of, Link_Name_of, Attr_Name_of,

Attr_Val_of, Source_of, Target_of, Entry_of, Component_of)

1. E is the set of Entries,

2. U is the set of Units,

3. IU € U is the Initial Unit,

4, Cr is the method use cursor and points to the current
entry being manipulated,

5. Me is the method use mark in the Entry set and points to
an Entry,

&. Next_Entry: E —-> E structures the entries for each
component,

7. Refinement_of: E -> U determines the Unit to which each
refinable Entry refines,

8. C is the set of Components,

9. Unit_of: C -> U determines the Unit each Compaonent
belongs to,

10. L is the set of Links,

11. A is the set of Attributes,

12. AV is the set of Attribute Values,



Table S (continued) 103

13.

14,

13.

16.

17.

18.

19.

20.

a21.

aa.

Category_of: C -> CCat maps the Components to Component
Categories,

Class_of: U -> UC1 maps the Units to Unit Classes,
Link_Name_of: L -> LN determines the Entry Link Name for
each link,

Attr_Name_of: A -> AN determines the Attribute Name for
each Attribute,

Attr_Val_of: A -> AV determines the Attribute Values for
each Attribute,

Type_of: AV -> TD determines which Attribute Value is of
which Type Definition,

Source_of: L -> E determines the Source Entry for each
Link,

Target_of: L -> E determines the Target Entry for each
Link,

Entry_of: A -> E determines the Attribute associated
with each Entry and

Component_of: E -> C determines the Entries in each

Component,



104

Table &. TRIAD Model Constraints

Let the function First_CCat be defined by

First _CCat(s : UCl) = x and Class_for(x) = s and
For all y € CCat if Class_for(y) = s then Next_CCat(y) # e

Lemma First_CCat is a total function

Next_Category Constraint:
For all x,y: CCat 1if Next_CCat(x) = Next_CCat(y) then
x=y and Class_for(x)=Class_for(y) iff there exist a k:
N such that Next_CCat (x) = y or Next_CCat “ (y) = x

Next_Entry Constraint:

i

For all d,e: E if Next_Entry(d) Next_Entry(e) then

d=e and Component_of(Unit_of(d))
Component_of(Unit_of(e)) iff there exists a k: N such
that Next_Entry * (d) = e or Next_Entry % (e) = d
Component Category Contents Constraint:
For all y € CCat there exists an s € UCl such that
Class_for(y) =g
Initial Unit Constraints:
There exists an IU € U and an s € IUCL such that
Class_of(IU) = s
Let the relation Is_Predecessor_of c U X U be
defined by u Is_Predecessor_of v iff there exists an e
€ E such that Refinement_of(e) = v and

Unit_of(Component_of(e)) = u



Table 6 (continued)

Connectivity Constraint:
For all u € U there exists a k such that
IU Is_Predecessor_af * u

Unit Contents Constraint:

For all c € C,

Class_for(Category_of(c)) = Class_of(Unit_of(c))

Refinement Constraint:
For all e € E and u € U, if Refinement_ufle)
Category_of (Component_of(e)) Cat_Refines_to
Class_oaf{u) and
Refinement_of(e) + Unit_of (Component_of(e))
Component Constraints:
For all e € E, there exists a c € C,
such that Companent(e) = c
Attributes Constraints:

For all a € A, Cat_of_Attr(Attr_Name_of(a))

Category_of (Component_of (Entry_of(a))) and

Type_Def_of(Attr_Name_of(a)) =
Type_of(Attr_Val _of(a))

l.inks

For all 1 € L,

[}

Category_of(Component_of (Source_of(1)))

Dom_of(Link_Name_of (1)) and

Category_of (Component_of (Target_of(1)))

105

u then



Table 6 (continued) 106

CoDom_of(Link_Name_ of(l)) and
For jsk € Ly, if (Source_of(j) = Source_of(k) and
Link_Name_of(j) = Link_Name_of(k)) ar
(Target_of(j) = Target_of(k) and

Link_Name_of(3j) = Link_Name_of(k)) then j=k

3.2 TRIAD MODEL OPERATORS

The TRIAD model operators are divided into two groups
corresponding to the two components of the TRIAD model. The
method definition operators allow the method definer to
create and modify the sets comprising the method definition.
Table 7 lists the operators (in pairs where appropriate) and
a brief description of the aoperator’s function. The target
of an operator is assumed to be the position of the method
cursar within the Component Category set. The word
"current"” when applied to the Component Category refers to

the category currently pointed to by the method cursor.



107
Table 7. Method Definition Operators

Create/Delete Method creates/deletes an entire method
definition

Add/Delete Unit adds/deletes a Unit Class. The Add_Unit
aoperator also creates the first Component Category
in the class giving it the same name as the class

Add_Category adds a new non-refinable Component Category
following the current Component Category.

Add_Refinable_Category adds a new refinable Component
Category following the current Component Category.

Delete_Category deletes the current Component Category.

Add_Type_Definition adds a rew type to the set of type
definitions.

Add/Delete Attribute adds/deletes an Attribute Name. The
Add_Attribute operator also tells which type
definition belongs to the Attribute Name .

Add/Delete Link Name adds/deletes a link name from the
current Component.Category.

Add/Delete PC Reference adds/deletes a PC reference from the
current Component Category.

Next/Previous Category moves the method cursor to the
next/previous Component Category if the cursor is
not already pointing to the last/first Component

Category in the Unit Class.



Table 7 (continued) 108

First_CCat positions the method cursor at the first

Component Category within the named Unit Class.



109

The method use operators manipulate the sets specified
during method definition. Many of these operators assign
values to the names defiried previously. As with the method
definition operators, a cursor is used to specify the
default target entry for the operators. For those operators
requiring a source as well as a target, an additional cursor
called the Mark Entry is provided. The word "current'
applied to an entry refers to the entry currently being
pointed to by the cursor.

Table 8 contains the names of the method use operators

and a brief description of their function.



Table 8. Method Use Operators

Use/Delete Method uses/deletes a method use.

Create_Unit creates a copy of Unit Class. An Entry and
Component is created for each Component Category
within the Unit Class.

Mark_Entry sets the additional cursor to point to the Entry
pointed to by the cursor.

Refine creates a Refinement Link from the current Entry to
the Unit pointed to by the Mark Entry.

Delete_Unit deletes the Unit which is the Unit of the
current Entry, provided the current éntry is the
first Component of the Unit. Also the Unit must
not have any Secondary Links or additional
Refinement Links connected to it.

Replicate_Entry creates another Entry of the same Category
following the current Entry in the same Component
as the current Entry.

Delete_Replicate deletes the current Entry, provided it is a
replicate within a Component and that it is not
the last replicate.

Change_Attr_Val_of changes the value of the specified
Attribute associated with the current Entry to the
new specified value. The value must be of the same

type as that defined for the Attribute name.



Table B (continued) 111

Change_Link changes the specified link (source or target) to
be the current Entry.

Follow_Link follows the specified 1ink which has either the
current Entry as its source or target and sets the
cursor to the named link’s target or source.

Move_Entry moves the current Entry to follow the Entry
pointed to by the Mark Entry. Both Components
must be of the same Category.

Next/Prev Component sets the cursor to the first/last Entry
in the next Component within the same Unit
provided the cursor is not already pointing to the
last/first Component within the Unit.

Next/Prev Entry sets the cursor to the next/previous Entry
within the current Component provided the cursor
is not already paointing to the last/first Entry in
the Component.

Visit_Refinement sets the cursor tc the first Entry within
the Unit which the current Entry refines to
provided the current Entry is refinable and has

been refined to a Unit.



3.2.1 TRIAD MODEL METHOD DEFINITION OPERATORS

Table 9 gives the formal definitiomn for each TRIAD
method definition operator. Each operator is presented with
its name, parameters, pre and post conditions (require and
ensure) and a description of the operator. All parameters
are assumed to be constant. The number sign (#) preceding a
name indicates that the name represents the old value as
opposed to the current value. The # symbol represents the

undefined value for a function and ¢ is the empty set.



Table 9. Formal Definition of the

TRIAD Method Definition Operators

Operation Create_Method(Start_Unit_Name : ch_string)

Reguire CCat=¢ and UCl=¢p and AN=¢ and PR=¢ and IUCL=g¢

o

Ensure IUCL = Start_Unit_Name an

ucCt = {IUCL} and

CCat = {(IUCL> and

Class_for (IUCL) = IUCL an

Cm = IUCL

Description The Create Method operator begins the
definition of a new method. It creates the first
Unit, named Start_Unit_Name and places this name in
the Initial Unit Class (IUCL). The first Component
Category (CCat) is also created with name
Start_Unit_Name.
Operation Delete_Method;

Require CCat+¢ and UC1*¢ and AN+¢ and PR+¢.

Ensure CCat=¢ and UCl=¢g and AN=¢ and PR=@.

Description The Delete Method operator deletes the current

method.



Table 92 (continued)

Operation Add_Unit(Unit_Name : ch_string)

Require Unit_Name f #UC1

Ensure UCl = #UCl1 U (Unit_Name} and

CCat = #CCat U {Unit_Name? and
Class_for(Unit_Name) = Unit_Name and
Cm = Unit_Name;

Description The Add Unit operator creates a new Unit Class
with name Unit_Name and the first Caomponent Category
in the unit is created with the same name, also. The
method cursor, Cm, is set to point to the first entry
for the entire unit.

Operation Delete_Unit
Require #Cm = First_CCat(Class_for (#Cm))
Ensure UCL = #UCL - (Class_for(Cm)2> and
For all y: CCat, [ CCat = #CCat - (y} and
i
For all n: LN
Dom_of(n) = L iff #Dom_of(n) = y and

CoDom_of(n) = L iff #CoDom_ofin) = y

For all t: AN,

Cat_of_Attr(t) = vy iff #Cat_of_Attr(t) = y and
Yy + #Cm) 1]

iff Class_for(y) = Class_for (#Cm) and

Cm = IUCL

Description The Delete Unit operator deletes the Unit



Table 9 (continued) 115

Class of the is the unit for the Component Category
pointed to by the method cursor, Cm. The cursor must
be on the first category of the class. All components
which are members of the deleted unit are also
deleted.
Operation Add_Category(CCat_Name : ch_string)
Reguire CCat_Name ? #CCat
Ensure CCat = #CCat U (CCat_Name} and
Class_for(CCat_Name) = Class_for(#Cm) and
Next_Category(#Cm) = CCat_Name and
Cm = CCat_Name
Description The Add Category operator adds a non-refinable
Component Category with name CCat_Name following the
CCat pointed to by the method cursor, Cm.
Operation Add_Refinable_Category(CCat_Name, Unit_Name :
ch_string)
Require CCat_Name f #CCat
Ensure CCat = #CCat U {(CCat_Name?} and
Class_for (CCat_Name) = Class_for (#Cm) and
Next_Category(#Cm) = CCat_Name and
Cm = CCat_Name and
CCat_Name Refines_to Unit_Name
Description The Add Refinable Category operator adds a

refinable Component Category with name CCat_Name



Table 9 (continued)

following the CCat pointed to by the method cursor,
Cm. The new category refines to the Unit Class named
Unit_Name,
Operation Delete_Category
Reguire cm € #CCat and
#Cm # First_CCat(Class_for (#Cm))
Ensure CCat = #CCat - {(#Cm} and
For all y: CCat,
[Cm = y iff [ #Cm = #Next_Category(y) and
#Next_Category(#Cm)

iff #Next_Category(y) = #Cm

Next_Category(y) =
#Next_Category(y) otherwise and

For all n: LN
L if #Dom_of(n) = #Cm

Dom_of(n) =
#Dom_of(n) otherwise and
L if #CoDom_of(n) = #Cm

CoDom_of(n) =
#CoDom_of(n) otherwise and

For all t: AN,
Cat_of_Attr(t) = vy
iff [ #Cat_of_Attr(t) =y and
Y £ #Cm 1 1]
iff Category_of(Component_of(#Cm) = vy
Description The Delete Category operator removes the

Component Category pointed to by the method cursor,

Cmy as long as the cursor is not pointing to the first



Table 9 (continued) 117

Category in the Class.
Operation Add_Type_Definition(Type_Name : ch_string)
Reguire Type_Name f TD
Ensure TD = #TD U {(Type_Name?
Description The Add Type Definition operator adds a new
type definition to the TD set.
Operation Add_Attribute(Attr_Name, Type_Name : ch_string)
Reguire Attr_Name f AN and
Type_Name € TD and
Cat_of_Attr (Attr_Name) + #Cm
Ensure AN = #AN U {(Attr_Name? and

#Cm and

Cat_of_Attr (Attr_Name)

Type_Def_of (Attr_Name) Type_Name
Description The Add Attribute operator adds the Attribute
Name named, Attr_Name and of type, Type_Name to the
Component Category pointed to by the method cursor,
Cm.
Operation Delete_Attribute(Attr_Name : ch_string)
Reguire Attr_Name € AN
Ensure AN = #AN - {Attr_Name)
Description The Delete Attribute operator removes the

Attribute Name Attr_Name froaom the Entry_Category

pointed toc by the method cursor, Cm.



Table 9 (continued)

Operation Add_Link_Name(Link_Name, CCat_Dom, CCat_CoDom :

ch_string)

Reguire Link_Name f #LN

Ensure LN = #LN U {L ink_Name} and
CCat_Dom = Dom_of(Link_Name) and

CCat_CoDom = CoDom_of(Link_Name).

Description The Add Link Name operator adds the Link Name

Link_Name to the Component Category pointed to by the

method cursor, Cm with domain and codomain specified

by CCat_Dom and CCat_CoDom, respectively.

Operation Delete_Link_Name(Link_Name : ch_string)

Regquire Link_Name € #LN

Ensure LN = #LN - {Link_Name}

Description The Delete Link Name operator deletes the Link

Name named Link_Name of the Entry Category pointed to

by the method cursor, Cm.
Operation Add_PC_Reference(PC_Nama : ch_string)
Require PC_Name f #éR
Ensure PR = #PR U {(PC_Name} and

PC_Name = Proc_for(#Cm).

Description The Add Procedures Reference operator adds a

Procedure name to the Procedures Reference (PR)

The reference is attached to the Entry Category

pointed to be the method cursor, Cm.

set.



Table 92 (continued) 119

Operation Delete_PC_Reference(PC_Name : ch_string)

Require PC_Name € #PR and

Proc_for (#Cm) = PC_Name
Ensure PR = #PR - (PC_Name}) and
Proc_for{(#Cm) = L

Description The Delete Procedures Reference operator
deletes the Procedures Reference named PC_Name which
is associated with the Component Category pointed to
by the method cursor, Cm.

Operation Next_Category

Require #Next_Category * L

Ensure Cm = #Next_Cateqgory(#Cm).

Description The Next Component Category operator sets the
method cursor to point at the next entry category in
the Unit Class by applying the Next_Category function.

Operation Previous_Category

Require #Cm * Class_for (#Cm)

Ensure For all y: CCat, Cm = y iff #Next_Category(y)=#Cm

Description The Previous Category operator sets the method
cursor to point at the previous entry category in the
Unit Class by applying the inverse of the
Next_Category function. This operation is not
performed if the cursor is at the first Component

Category of the Unit Class.



120

The method structure is defined using the above
operators. The software engineer defining the method
uses the Add/Delete Unit Class and Add/Delete
Component Category operators to define the structure
of the method. The Next_Category function allows the
navigation through the method definition. Attributes
and links may be added at any time. The method cursor
is used as the default for any of the operators
requiring a target.

When a Component Categqgory is defined, it can be
specified as refinable using the Add_Refinable_Entry
and therefore one or more Unit Classes must be named
to which the Category refines to. If more than one
Unit Class is specified for the Cat_Refines_to
relation then this Component Category can refine to
any one of the Unit Classes named, but only one.
Therefore a se2lection or alternate feature is allowed
for refinement. Also Attribute Names can be created
and associated with either the Compaonent Category
pointed to by the method cursor or the uUnit Class
which the Component Category pointed to by the method
cursor is contained in.

If the method is specified top down (the first

unit defined has references to undefined units) then



121

it is necessary to keep track of all Unit Class names
so that the uniqueness of the names can be preserved.
Maintaining the Unit Class name uniqueness implies not
allowing a unit to be defined with the same name as an
existing Unit Class. Also when deleting a Unit Class,
the specified Unit Class must be defined. Further,
when a Unit Class is deleted, all references to it
must be marked as undefined. Before a method can be
used and Unit instances created, all references to
undefined Unit Classes must be satisfied by either

defining the Unit Class or by removing the reference.

3.2.2 TRIAD MODEL METHOD USE OPERATORS

Table 10 gives the formal definition of the methad

use operators.



122

Table 10. Formal Definition of the Method Use Operators

Operation Use_Method

Require L = ¥ and A = ¢ and C

1]
B
1
J
o
m

1]
B

[i7]

3

o

c

]
<3
|ﬂl

J

[a%

IU = L and IUCL + 1
Ensure U = IU and

Class_of(IU) = IUCL and

For all y: CCat,

There exists a ¢ € C such that {(c> = C - #C and

Category_of(c) = y and
Unit_of(c) = u and

There exists an e € E such that
[ (e = E —- #E and
Component_of(e) = ¢ and
Cr = e iff Category_of(Component_of(e)) =
First_CCat(Class_of(Unit_of(Component_of(e)))
and
For all I: L, there exists an 1 € L such that

L (1> = L - #L and

Scurce_of(l) = e

iff Category_of(Component_of(e))
Dom_of(Link_Name_of(1l)) and

Target_of(l) = e

iff Category_of(Component_of(e))

CoDom_of(Link_Name_of(l)) 1



Table 10 (continued) 123

For all a: A, [ (a> = A - #A and
Entry_of(a) = e and
There exists a t: AN such that
Attr_Name_of(a) = t iff
Cat_of_Attr(t) = vy 1
iff
Category_of(Component_of(Entry_of(a)))

= )/]

iff Class_for(y) IUCL and
For all e: E; Cr = e iff
Category_of (Component_of(e)) =
First_CCat(Class_of (IUCL))
Description The Use Method operator begins the use of a
method. The Initial Unit (IU) which is of type
Initial Unit Class is created. The cursor is set to
point to the first entry in the unit.
Operation Delete_Method_Use
Reguire IU + .
Ensure L = ¢ and A = ¢ and C = ¢ and E = § and U = @
Description The Delete Method Use operator deletes the

current method use.



Table 10 (continued) 124

Operation Create_Unit
Require There exists an s: UCL such that

Category_of(Component_of(#Cr)) Cat_Refines_to s

Ensure These exists a u € U such that {u> = U - #4 and
Refinement_of (#Cr) = u and
Class_of(u) = Category_of (Component_of (#Cr))

Cat_Refines_to and

For all y: CCat,
There exists a ¢ € € such that {(c} = C - #C and

and

Category_of(c)

]
<

a

Unit_of(c) = u an

There exists an e € E such that
[ {e = E - #E and
Component_of(e) = c and
Cr = e iff Category_of(Component_of(e)) =
First_CCat(Class_of(Component_of(Unit_of(e)))

and

For all 1: L, there exists an 1 € L such that

C (1> =L - #L and

Source_of(l) = e

iff Category_of(Component_of(e))
Dom_of(Link_Name_of(l)) and

Target_of(l) = e

iff Category_of(Component_of(e))



Table 10 (continued) 125

CoDom_of (Link_Name_of(1l)) 1

For all a: A, [ (a> = A ~ #A and
Entry_ofl(a) = e and

There exists a t: AN such that

Attr_Name_of(a) = t iff Cat_of_Attr(t) =y ]

iff Category_of(Component_of (Entry_of(a))) = yl

iff Class_for (y) Class_of(u) and
For all e: E, Cr = e iff
Category_of(Component_aof(e)) =
First_CCat(Class_of(u))

Description The Create Unit operator creates a Unit whose
class is determined by the value of the Entry pointed
to by the Cursors Cr. The cursor must be on a
refinable entry.

Operation Mark_Entry

Reguire #Cr + 4

Ensure Me = #Cr
Description The Mark Entry operator marks the current
Entry pointed to by the Entry Cursor, Cr.

Operation Refine

Require Refinement_of(#Cr) = L and
Me + L
Ensure Refinement_of(#Cr) = Unit_of(Component_of(Me)) and

There exists an e: E, such that [ Cr = e



Table 10 (continued) 126

Category_of{(Component_of(e)) =
First_CCat_(Unit_of(Component_of (Me))
Description The Refine operator creates a Refinement Link
fram a non-refined refinable entry pointed to by the
cursor, Cr, to the Unit of the entry pointed to by the
Mark Entry, Me, which was previously set by the
Mark_Entry operator.
Operation Delete_Unit
Require Refinement_of (#Cr) # L and
For all e: E,
[ Refinement_of(e) = Refinement_of (#Cr)
iff e = #Cr and

For all 1l: L and e: E,

e iff e #Cr an

o

[ Source_of(1l)

[a%

#Cr an

[ Target_of(l) = e iff e

L1 3

Source_of (1)
iff Unit_of(Component_of (#Cr)) =
Unit_of(component_of(e))
Ensure U = #U - (Refinement_of(#Cr)} and
Refinement_of (#Cr) = L and
L For all e: E,
[E = E - {e} and
For all a: A, A = #A - (a2

iff Entry_of(a) = e and



Table 10 (continued) 127

For all 1: L, L = #L - {12
iff Source_of(l) = e gr Target_of(l) = e 3
iff Unit_of (Component_of(e)) = Refinement_of(#Cr) 1
Description The Delete Unit operator deletes the Unit
which is the refinement of the Entry pointed to by the
Entry Cursors Cr.
Operation Replicate_Entry
Require Category_of (Component_of (#Cr)) #
First_CCat(Class_of(Unit_of(Component_of (#Cr))))
Ensure There exists an e: E such that {(e)> = E ~ #E and
Component_of(e) = Component_of(#Cr) and
Cr = e and
Next_Entry(e) = Next_Entry(#Cr) and
Next _Entry(#Cr) = e
Description The Replicate operator creates a new entry,
following the one pointed to by the cursor, Cr, of the
same category and in the same unit and component.
Operation Delete_Replicate
Require Category_of (Component_of (#Cr)) *
First_CCat(Class_of(Unit_of(Component_of (#Cr))))
Ensure E = #E -~ (#Cr2> and
For all a: A,
A = #A — {a) iff Entry_of(a) = #Cr and

For all 1: L, L = #L - (1>



Table 10 (continued) 128

iff [ Source_of(l) = #Cr gor Target_of(l) = #Cr 1]
For all e: E,
#Next Entry(#Cr) iff
#Next_Entry(e) = #Cr
Next_Entry(e) =
#Next_Entry(e) otherwise
Description The Delete Replicate operator removes the
entry if it is not refined to a unit, in the component
which the cursor is currently pointing to,
Operation Change_Attr_Val_of(Attr_Name : ch_string,
Attr_Val_of : AV)
Require There exists an a: A, such that Attr_Name_of(a) =
Attr_Name and
Entry_of(a) = #Cr and
Cat_of_Attr (Attr_Name) =
Category_of (Component_of (#Cr))
Ensure There exists an a: A, such that Attr_Val_of(a) =
Attr_Val_of and
AV = #AV U (Attr_Val_of? and
Type_of(Attr_Val_of) =
Type_Def_of(Attr_Name_of(a)))
Description The Change Attribute Value operator changes
the value of the Attribute whose name is Attr_Name and

is associated with the Entry pointed to by the cursor,

Cr)



Table 10 (continued)

Operation Change_Link(Link_Name : ch_string)
Require [ Dom_of(Link_Name_of(Link_Name)) =
Category_of (Component_of (#Cr)) or
CoDom_of(Link_Name_of(Link_Name)) =

Category_of(Component_of(#Cr)) 1 and

[ Source_of(Link_Name) = #Cr or
Target_of(Link_Name) = #Cr 1
Ensure Source_of(Link_Name) = Me
iff Target_of(Link_Name) = #Cr and
Target_of(Link_Name) = Me
iff Source_of(Link_Name) = #Cr

Description The Change Link operator sets the source or

target (whichever points to the current Entry)

129

of the

link named Link_Name to the new entry pointed by the

Entry Mark, Me.

Operation Follow_Link(Link_Name : ch_string)

Require Source_of(Link_Name) = #Cr or
Target_of(Link_Name) = #Cr
Ensure Cr = Target_of(Link_Name)
iff Saurce_of(Link_Name) = #Cr and
Cr = Source_of(Link_Name)

iff Target_of (Link_Name) #Cr

Description The Follow Link operator moves the cursor to

the entry pointed to by the source or target



Table 10 (continued) 130

(whichever points to the current Entry) of the link
named Link_Name.
Operation Move_Entry
Require Me + i+ and
Category_of(Component_of(Me)) =
Category_of(Component_of (#Cr))
Ensure Component_of(Me) = Component_of (#Cr) and
For all e: E,

Me iff #Next_Entry(e) =
#Next_Entry (#Cr)

Next_Entry(Me) iff #Next_Entry(e) =
#Next_Entry(Me)

Next_Entry(e) =

#Next _Entry(#Cr) iff #Next_Entry(e)

Me

#Next_Entry(e) otherwise
Description The Move Entry operator moves the marked Entry
from its current place to a place following the Entry
pointed to by the cursor Cr,
Operation Next_Component
Require #Cr # 4L and
Next_Category(Category_of (Component_of (#Cr))) # L
Ensure There exists an e: E, such that Cr = e iff
Next_Category(Category_of (Component_of (#Cr)) =
Category_of (Component_of(e)) and

For all f: E, Next_Entry(f) + e



Table 10 (continued) 131

Description The Next Component operator sets the
cursor to the next Component in the Unit
unless the cursor is pointing to an Entry of
the first Component.

Operation Prev_Component

Require #Cr # i and
First_CCat(Class_of(Unit_of(Compaonent_of (#Cr)))) %

Category_of (Component_of (#Cr))

Ensure There exists an e: E such that, Cr = e iff
Next_Categoary(Category_of(Component_of(e))) =
Category_of(Caomponent_of(#Cr)) and
For all f: E, Next_Entry(f) + e

Description The Previous Component operator sets the

cursor to the first Entry in the preceding Component
in the Unit if the cursor is not already set to the
first Component in the Unit.

Operation Next_Entry

Require Next_Entry#Cr) # L

Ensure Cr = Next_Entry(#Cr)

Description The Next Entry operator sets the cursor to the

next entry in the component,



Table 10 {(continued) 132

Operation Prev_Entry

Require #Cr # L and

There exists an e: E, such that Next_Entry(e) =
#Cr
Ensure For all e: E, Cr = e iff Next_Entry(e) = #Cr
Description The Previous Entry operator sets the cursor to
the preceding Entry in the Componrnent if the cursor is
not already set to the first Entry.
Operation Visit_Refinement
Regquire Refinement_of (#Cr) + 1
Ensure There exists an e: E, such that Cr = e iff
First_CCat(Class_of(Refinement_of(#Cr))) =
Category_of (Component_ocf(e))
Description The Visit Refinement operator sets the cursor
to point to the first Entry in the Unit which is the
refinement of the Entry which the cursor is currently

pointing at,

The first time a method is used for a new piece of
software, a Unit fram the Initial Unit Class (the Initial
Unit) is created. The cursor is set to the first Entry
within the Unit. From the Initial Unit, all of the other
Units are created. A Unit can only be created from an Entry

in a Component with a valid reference to a Unit Class, which



133

is a refinable Component Category. The process of creating
a Unit also creates Entries and Components for all Component
Categories belonging to the unit class.

Deletion of a Unit is accomplished by reversing the
process of creating instances. Units are deleted by
positioning the cursor to the Entry that refines to the Unit
to be deleted. The Refinement Link is removed and the Entry
is returned to its original state (before it was refined).
If the removed Refinement Link was the only one to the Unit
and there are no Secondary Links between Entries in the Unit
te be deleted and Entries in other Units, then the Unit is
destroyed. If another Refinement Link refers to the Unit to
be deieted, then only the link from the Entry from which the
deletion was initiated is deleted. The link from the
referenced Unit to the Entry is removed and the Unit is left
intact. If the Unit to be deleted has no additional
Refinement Links from other Entries, but does have Secondary
Links referencing it, then the deletion is not permitted
until the method user explicitly removes the Secondary
Links. The same sequence of events is applied toc every Unit
that is referenced (either by Refinement Links or by
Secondary Links) by a Unit to be deleted. The delete
operator must not ruin the integrity of the Refinement Links

by removing a Unit that is refined to by another Entry.



134

The Replicate Entry operator creates another Entry in a
Component. The Delete_Replicate operator remaves a
replicated Entry from the Component providing the Entry is
not currently refined to another Unit.

The Change Attribute Value operator allows the software
engineer to maintain the values of the Attributes. This
operator implies the use of a text editaor to change the long
strings of text that may be stored in an Attribute. The
actual form of the text editor is left to the implementor,
but the editor should have the operators to add, delete,
change and search text, in addition to operators for moving
through the text based on characters, words sentences and
paragraphs. |

The Change Link operator allows the source or target of
Secondary Links to be changed. Secondary Links are Entry to
Entry links, except when the links are between the first
Entries of Units, then the links are essentially Unit to
Unit links. These links provide the method definer with the
means to connect entire Units together with a single link
type.

During method application it is possible for the user
to move entries from one position in a Component to another
position in the same or different Components. Both

Components (source and target) must be of the same Category.



135

If the Entry being moved has references to other Units by
way of links (either Refinement or Secondary), the
references are left intact, thus, this operation has the
effect of altering the network of the Units. This operation
is essentially a combined Delete Entry and Replicate Entry
operator, because the links are removed from the source Unit
and moved to the target Entry.

A query package provides a general purpose capability
for searching the structure and contents of the TRIAD model.
It is not necessarily a single cperator, but several. It
should search for Unit, Entry and Attribute Names as well as
the Attribute Values. This query capability should be as
robust as those found with database management systems.

The use of a method often suggests changes in the
method definition. Some changes are subtle and only involve
a name change for a unit or entry, while others may create
new units and delete existing ones. The process of changing

a method that has already been applied is called "Tuning".

3.3 TUNING A METHOD

Tuning can be of two types--local or global. Local
tuning involves changing the structure and not the content

of a Unit. Local tuning is restricted to changing the names



136

of Entries, adding or deleting Attributes and adding or
deleting Secondary Links. The changes are only applicable
to the Unit being tuned. All other Units of the same Unit
Class are unaffected, hence the reason for the name local
tunihg. Additional Component Categories can be added during
local tunings however, changes in the structure of the Unit
Class often means a weakness in the software engineering
method definition. Structural changes are best made as
global tuning actions to keep the Units consistent with the
Unit Classes.

Global tuning involves changing the Unit Classes in the
same manner as when the method was first defined. However,
since the method has already been partially applied, all
changes must applied to each Unit of the same Class to keep
future Units consistent with existing Units. The same
checks that were made for the Delete Unit operator are also
made during global tuning when a refinable Entry is removed
or a Unit Class is deleted.

Although global tuning by default affects the entire
collection of Units, it is sometimes desirable to globally
tune only a subset of the Units. Global tuning of a subset
causes a consistency praoblem if any Unit Class has Units
included and excluded from the subset. After the global

tuning of such a Unit Class is complete and when the next



137

instance of the Unit is made the new globally tuned version
is used. The result of this tuning is the elimination of
the excluded Unit Class. This problem is overcome by
changing all Entries refining to the unit to specify more
than one Unit Class to refine to. Then the Entry can be
refined to either the original Unit (excluded from the
subset) or the new Unit changed through global tuning
(included in the subsget). In the Call Structure example,
the Unit class is "MODULE". After a Call Structure is
defined using this software engineering method, suppose that
the program represented is greatly expanded and new modules
coded in a different programming language are added. In
this case the method designer wants to change the "MODULE"
unit to add new Entries specific to the programming language
used to implement the module. Rather than creating one Unit
Class with language specific Entries, different Unit Classes
are created for each language and the Entry refining to the
”ﬁDDULE” Unit must refine to a particular type of "“MODULE"

such as CMOD, FORTMOD, PLIMOD etc.



138

3.4 TRIAD PROCEDURES

Additional features of the TRIAD model can be expanded
from the basics defined above. Most of these features are
achieved through the implementation. One such feature,
Procedures, is very basic to the use of the TRIAD model for
representing software engineering methods. The TRIAD model
supports the definition of the references to Procedures,; but
the actual construction of the Procedures is left to the
Method Designer. They are built from whatever languages and
compilers are available in the implementation of the model.
A Procedure is written in a programming language. The
Procedure is used by the method designer to express the
procedural aspects of using a method. For example, rules
for the use of a method can be implemented using a
Procedure. Procedures can also be used as tool interfaces
and to implement extended commands. Operators are provided
for the Procedure to manipulate and process the information
stored in the methods defined using the TRIAD Model.
Procedures are invoked based on access to an Entry where the
Procedures reference is attached. When an Entry is
accessed, the Procedure invocation rules, which are stored
as Attributes of the Entry, are checked and orly those

Procedures satisfying a two component rule get invoked. The



139

first component of the rule is the invoking agent, which is
either the user (by way of a direct command), an extended
cammand or another Procedure. In the latter two cases, the
name of the extended command or Procedure must match the
invoking agent name. The second component of the invoking
criteria is the entry/unit status. The following S status

are possible:

(=} Create,
o Delete,
o Enter,

o Exit and
o Modify.

These states correspond to user access actions, thus
one Procedure can be invoked when the user enters (applies
the Next function to change the cursor) an Entry and another
ane when the user exits the Entry.

For instances the display of the entry may cause a
Procedure to be invoked which‘will dynamically count the
lines of code contained in an adjacent Entry containing the
program source code. In this example, the invocation
criteria is the display of the form. Other criteria can
include removing the Entry from display, modifying the entry

text or access of the Entry by a tool.



140

Procedures use implementation provided operators to do
processing in the Units, but are prohibited from altering
the structure of the Units (delete Units or changing links).
This restriction eliminates the possibility of deadlock
situations caused by indirect invocation of one Procedure by

another Procedure.

3.5 USER VIEW OF THE TRIAD MODEL

Although the definition of the TRIAD model is in terms
of sets, functions and relatiaons, the software engineer
using the TRIAD model sees it differently. Although the
user interface is dependent on the implementation of the
model, a rudimentary description here of the user view of
the model will facilitate the discussion of the application
of the model to software engineering methods. Figure 11
shows the basic structure of the user view of the TRIAD
model, which is a Unit Class containing a refinable and

non-refinable component categories.



141

Attributes:
Links:
Procedures name
Unit Name |

and rules:
' Unit Number

Attributes:
Links:
Procedures name
Entry Name |

and rules:
| Refinement Link

Attributes:
Links:
Procedures name
Entry Name |

and rules:
(TEXT)

Figure 11.

User View of the TRIAD Model

The visible parts of the unit are the box surrounding

the Unit, the vertical lines separating the Entries and the

‘Entry Names or tags (printed in dark type). Located above

each Entry in the Unit are the Attributes.

Links and Procedure References are special types

Attributes, but are show here to emphasize their

method definition and

use,

Note that the user view parallels the model

groups of Attributes are clustered together into

The Secondary

of

value to

in that the

Component

Categories represented by the boxes surrounding them. All



142

the Categories are surrounded by a frame which represents

the Unit Class.

3.6 USING THE TRIAD MODEL TO REPRESENT A METHOD

The Call Structure example in Figure & from Chapter 11
is used to illustrate thevTRIAD model. First the Call
Structure method will be defined using the method definition
elements of the TRIAD model. Next, the method definition
will be used to apply the methaod to the name and address
file maintenance example.

To represent the Call Structure af a graoup of
subroutines or modules, a Unit Class called "MODULE" is
created. "MODULE" has an Attribute associated with it which
contains the name of the module. Two Component Categories
are contained in the “"MODULE" Unit Class. The first is the
Component Category "PROGRAMMER" which recaords the name of
the programmer responsible for the module. "PARAMETERS" is
the next Component Category. It contains the names and type
of the parameters required for the module which are
contained in attributes associated with the entry. This
Component Category is capable of being replicated,; which
allows more than one parameter to be specified for each

module. The next Component Cateqory is "SOURCE", for the



143

source code of the module. AN Attribute which is of type
text, contains the actual source dode. Following the
"SOURCE" Component Category is the "CALLS" category.
"CALLS" is refinable to the "MODULE" Unit Class. An
Attribute containing the name of the module being called is
associated with "CALLS". Since this example has only one
Unit Class, "MODULE" is the Initial Unit Class, also.
The outline below summarizes this example method definition.

Unit Class: MODULE

Attribute: (name_of_modulejch_strings)

Compdnent Category: PROGRAMMER

Attribute: (namejch_string)

Component Category: PARAMETERS
Attribute: (replicablejinteger)
Attribute: (parameter_namejch_string)

Attribute: (parameter_typejch_string)

Component Category: SOURCE

Attribute: (source_code;jtext)

Component Category: CALLS (refines_toi;MODULE)

Attribute: (name_of_called_modulejch_string)



144

The user view of the Call Structure method is shown in

Figure 12.

Module | | Unit Number

Programmer I

Parameters (MORE?7) ‘

Source Code |

Calls (MORE?) | I Unit Number

Figure 12. Module unit

Applying this method to the Call Structure example in

Chapter II produces the network of units shown in Figure 13.



Module l Main

' Unit 1

Programmer '

John Smith

Parameters

(More?) |

Source Code

PROGRAM MRAIN;

END.
Calls (More?) ] Edit '
Calls (More?) | Update | 3
Calls (More?) l Report l

143

d

Module | Report | Unit 4

Module | Edit

| unit 2

Programmer I John Smith
Parameters (More?) l
Source Code |

Calls (More?) l

Programmer | Bob Jones
Parameters (More?) l
Source Code |

Calls (More?) |

Figure 13.

Y

Module | Updat

e | Unit 3

Programmer |

Emily Nitmore

Parameters (Mo

re?) '

Source Code |

Calls (More?)

|

Instantiated

TRIAD Model Units



146

CHAPTER IV

ALTERNATIVE MODELS

The development of a model to represent software
engineering methods draws from several areas of computer
science research. Some methods have a rigid structure and
share many properties in common with programming languages.
In addition,; those methods that are primarily textual
require a sophisticated text editor to apply and maintain
the text contained in the method. Both of these features
indicate that grammars and the related syntax directed
editors are appropriate to represent some software
engineering methods.

The assistance a software engineer receives from a
computer based method is largely due to the storage and
retrieval of the information organized by the method. Data
models are useful for representing methods and databases are
extremely beneficial for the actual storage and retrieval of
the information.

In the future, artificial intelligence (AI) research
will contribute much to the techniques for applying expert
programmer knowledge to software engineering problems. The

research done in Al on knowledge representation is essential

146



147

to ultimately represent expert programmer knowledge. Until
expert programming knowledge can be captured and used,
research on knowledge representation can be practically
applied to assist the software engineer in developing
software.

Although the TRIAD Model was constructed by examining
the research contributions of these three areas, not one of
the three provides a single model strong encugh on its own
to support methods description and application. However,
the combination of elements from these three areas embodied

in the TRIAD model does provide a superior model.

4.1 GRAMMAR FORM

Soniy, Kuo and McKnight have developed the Grammar Form
Model for the representation of methods based on attribute
grammars [(SONI83, KUDOB3, MCKN8S1. The method is specified

by writing production rules for a grammar which will accept

the method. An attribute grammar is a quadruple

G=(6 & » A @ » A, sem) where

o G & =(V,6,P,g) is a grammar,

o A s is a specification of attributes,

o A is an attribute associator for G and A s and

o sem is a semantic function association for productions

in 6 such that sem(p) is a valid collection of semantic



148

functions for p in P.



149

\ ry

In_PseudoProduction Productions

S

=

R

Q

= ttribute_o

£ .

&

L

2
Semantic Attrib
Functions Type Nl;t:nes

Figure 14. Grammar Form Model



150

The method definition portion of the Grammar Form Model
is shown in Figure 14 The three circles represent (left to
right) the Vocabulary (G),; the Productions (P), the set of
semantic functions and the specification of Attributes (A).
The relation between the Attributes and the Vocabulary is
the attribute associator (A 3 ). The function
Semantic_Function_of maps the semantic functions to the
symbols. The relation In_Production_of relates the symbols
in the Vocabulary (V) to Productions (P). The relation
In_PseudoProduction_of relates some of the Non-terminal
symbols in the Vocabulary (V) to pseuda productions which
define the form view of the method. These productions are
of the form S->S’.

The method is defined in the Grammar Form Model by
describing a grammar. The Component Categories correspond to
the symbols. The method definer writes productions to
represent the structure of the symbols. For example, the
call structure example in Chapter II11 can be represented in
the Grammar Form Model as follows:

v

{Programmer Parameters Source Module?

P {Module -> Programmer, Parameters, Source, Module?}

In this example Module on the right hand side of the
production represents the "CALLS" Entry., Module has a dual
role, it is both a left hand side symbol and a right hand
side symbol. As a right hand side symbol it represents a

symbol belonging to the production and as a left hand side



151

symbol it represents a refinement to a new production. = This
ambiguity is resolved by introducing a pseudo production,
Module’ -> Module. Now the productions for the call
structure example are:

Module -> Programmer Parameters Source Module’

Module’ -> Module.

The attributes and semantic functions are equivalent in
both models and will not be expanded in this example. The
method use is not represented in Figure 14 because the
Grammar Form Model defines a grammar, which is merely used
to generate correct sequences in the "language" (method
definition). The use of the method is therefore the
application of the grammar generated by fhe method
definition.

Two major deficiencies of the Grammar Form Model as
opposed to the TRIAD Madel are readily apparent. The first
is that the Grammar Form Model does not explicitly support
links between productions and symbols as the TRIAD Model
does with the entry category links. However, links can be
simulated in the Grammar Form Model by storing the path from
one symbol to another symbol as an attribute. This
technique requires additional storage (the sum of the path
lengths to thé common parent production) and additional
computation to locate the ends of the links. The TRIAD
Model stores the location of the link source and target and

can access the entries directly in one operation. Although



1352

this deficiency can be overcome through a clever
implementation, the method definer has a more difficult time
conceptualizing Secondary Links with the Grammar Form model
then with the TRIAD model. The difficulty in
conceptualizing may affect the quality or the range of
software engineering methods that may be represented.

Secondly,; the GBrammar Form Model produces a tree
representation of the method and therefore cannot represent
graphical methods such as Dataflow Diagrams and the call
structure method. O0On the other hand, the TRIAD Model’s
Refinement Linkages can represent directed graphs and the
Secondary Links achieve network representations.

Table 11 compares the method definition of the TRIAD

Model to the Grammar Form Model.

Table 11. Comparison of TRIAD and Grammar Form Models

TRIAD Model Grammar Form Model
Component Categories (CCat) Vocabulary (V)
Attribute Names (AN) Specification of

Attributes (A)

Unit Classes Productions (P)

Next_CCat Next_Symbol



Table 11 (continued) 153

Cat_Refines_to In_PseudoProduction_of
Unit_Tfor In_Production_of
Is_Attr_of_Cat, Attribute Associator (A &)

Is_Attr_of_Class

The specification of a method is a different process

using the Grammar Form Model than that of the TRIAD Model.

The method definer is specifying a grammar and must define

the sets constituting the grammar. McKnight describes the

following steps in method specification [MCKNBS]:

o

[=]

Define Symbol Set - The vocabulary and start symbol,
Define Production Rule Set - the relations between the
symbols,

Define Attribute Set - the attributes associated with
the symbols,

Define Action Set - the semantic functions associated
with the productions,

Define Blank form Set - the mapping to the method user’s
view of the method,

Compile Method Description - Check the consistency of
the sets defined above and create a grammar to use the

defined method.



154

The following operators are available in the Grammar

Form Model to define a method:

o

Create_A_Method(Method_name, Start_Symbol : ch_string)
creates a new method called Method_Name with the start
symbol named Start_Symbol,

Delete_A_Method(Method_Name : ch_string) deletes the
method named Method_Name,

Add_A_Symbol (Symbol _Name : ch_string) adds the symbol
named Symbol_Name to the symbol set,
Delete_A_Symbol(Symbol_Name : ch_string) removes the
symbol named Symbol_Name from the symbol set,
Does_The_Symbol_Exist(Symbol_Name : ch_string) checks
the symbol set to see if the symbol named Symbol_Name
exists,

Add_A_Production(Production_Name : ch_string) adds the
production named Production_Name to the production set,
Delete_A_Production(Production_Name : ch_string) removes
the production named Production_Name from the production
set,

Add_To_A_Form(Form_Name, Production_Name : ch_string)
adds the production named Production_Name tao the form
named Form_Name,

Delete_From_A_Form(Form_Name, Production_Name :
ch_string) deletes the production named Production_Name

from the form named Form_Name,



135

Add_An_Attribute(Symbol _Name, Attribute_Name,
Attribute_Type : ch_string) adds the attribute of type
Attribute_Type and named Attribute_Name to the symbol
named Symbol_Name,

Delete_An_Attribute(Symbol_Name, Attribute_Name :
ch_string) remaves the attribute named Attribute_Name
from the symbol named Symbol_Name,
Does_The_Attribute_Exist(Symbol_Name, Attribute_Name :
ch_string) checks the symbol named Symbaol_Name to see if
the attribute named Attribute_Name exists,
Add_A_Semantic_Function(Function_Name, Production_Name :
ch_string) adds the semantic function named
Function_Name to the production named Production_Name
and

Delete_A_Semantic_Function(Function_Name,
Production_Name : ch_string) remeves the semantic
function named Function_Name from the production named
Production_Name.

The method use operators for the Grammar Form Model are

defined as follows:

o

Create_Form_Tree(Tree_Name) creates a new form tree with
name, Tree_Name,
Starting_Form_Tree(Form_Name) starts the form tree with

the blank form named Form_Name,



156

Delete_Form_Tree(Tree_Name) removes the form tree named
Tree_Name,

Refine(Entry_Name,Form_Name) refines the entry named
Entry_Name to the form named Form_Name,
Choice(Entry_Name) select the entry named Entry_Name
from a set of alternate entries (productions),
More{Entry_Name,n) make n copies of the entry named
Entry_Name,

Delete_Entry(Entry_Name) delete the entry named
Entry_Name,

Next_BlankEntry (Entry_Name) find the next unfilled entry
named Entry_Name,

Next_Entry(Entry_Name) find the next entry named
Entry_Name,

Next_Unrefined_Entry(Entry_Name) find the next unrefined
entry named Entry_Name,

Visit_Form(Form_Number) visits the form with number
Form_Number and

Child_Form(Entry_Name,Form_Number) visits the form with
number Form_Number which is refined to from entry named
Entry_Name, |
Parent_Form(Form_Number) visits the parent form with
number Form_Number and

Search_for_... includes several special operators which
search far occurrences of symbols, attributes and text

occurring within entries and forms.



157

Table 12 compares the method definition operators of the

TRIAD Model to the Grammar Form Model.



138

Table 12. Comparison of Method Definition Operators

TRIAD Model Grammar Form Model

Create_method - Create_A Methoa
Delete_Method Delete_A_Method

Add_Unit Add_To_A_Form

Delete_Unit Delete_From_A_Form

Add_Entry and Add_A_Symbol,Add_A_Production
Add_Refinable_Entry

Delete_Entry Delete_A_Symbol,Delete_A_Praduction
Query Search_for

Add_Attribute Add_An_Attribute,

Add_A_Semantic _Function

Delete_Attribute Delete_An_Attribute,
Delete_A_Semantic_Function

Add_L ink_Name
Delete_Link_Name

Next_CCat and Does_The_Symbol _Exist
Previous_CCat



159

Although the Grammar Form Model and the TRIAD Model
method definition operators appear to be very similar, there
are several major differences. The first major difference is
the lack of secondary links in the Grammar Form Model. The
organization of the symbols is by way of the parse tree and
access to all symbols is done by navigating through the
tree.

The second major difference is the process of defining
the method. The Grammar Form Model requires the method
definer to define the set of symbols and then the set of
productions which structure the symbols into a method. The
fifth row in Table 12 has two operators for the TRIAD Model
and two for the Grammar Form Model. However, the two TRIAD
operators differentiate between the two types of Component
Categories,; refinable and non-refinable, but perform the
same task that of adding an Component Category toc a unit
class. On the other hand, the two Grammar Form Model
operators perform separate operations. The first adds a
symbol to the symbol set and the second adds a production to
the production set. Thus the Grammar Form Model requires
two operators to define an entry in the model, which is done
with a single operation (choice of two operators based on

the type of entry) in the TRIAD Model.



160

Tying the Grammar Form Model productions to the form
view is a third major difference between the two models.
The TRIAD Model has a unifaorm representation for both the
method definition and uses while the Grammar Form Model uses
a grammar to represent the method and a form based interface
to use the method. The Add_To_Form operator associates a
production with a blank form name. All productions are tied
to forms on the basis of the derivation tree. The form
assignment is made for & production and all productiaons
derived from the production with the form specified are tied
to the same form until another form assignment is found.
Although the TRIAD Model Add_Unit is some what equivalent to
the Add_To_A_Form operator uf the Grammar Form Models the
Add_Unit operator is used to create a Unit Class. All
subsequently defined Component Categories are members of
that Unit Class which is referenced by the cursor. The
Grammar Form Model uses the Add_To_A_Form operator after all
aof the productions are defined.

Finally the method definer has operators in the Grammar
Form Model to search the sets of symbols, attributes and
productions, which are unnecessary in the TRIAD Model. When
a method is defined in the TRIAD Model, the method definer
has all of the information needed to define the Unit Classes
and the Component Categories. In the Grammar Form Model,
the method definer has to build the sets, independently or

constantly change between the sets if an incremental



161

approach is used. Even after the symbols are defined and
the productions written, the mapping to the form view is yet

another disjoint operation.

Table 13 compares the methdd use operators of the TRIAD

Model to the Grammar Form Model.



Table 13.

TRIAD Model

Comparison of Method Use Operators

Grammar Form Model

162

Use_Method
Delete_Method_Use
Create_Unit and Refine
Delete_Unit

Replicate
Delete_Replicate
Change_Attr_Value
Create_Link,

Delete_L ink and
Follow_Link

Create_Form_Tree,
Delete_Form_Tree
Refine, Choice
Delete_Form

More

Delete_Entry

Mark_Entry and Move_Entry

Next_Entry

Visit_Unit
Visit_Child_Unit
Visit_Parent_Unit

Guery

Next_Blank_Entry, Next_0Organizer
Next_uUnrefined_Organizer

Visit_Form
Child_Form
Parent_Form

Search_For

Starting_Form_Tree

and



163

The method use operators between the two models are
very similar. Again, the absence of secondary links in the
Grammar Form Model means that the link ogperators are present
for the TRIAD Model only. The Grammar Form Model has more
specific navigation operators then the TRIAD Model. However,
this is only a convenience factor and the same more specific
operators could be canstructed for the TRIAD Model by
combining the Next_Entry fgnctions and the query operator.

The TRIAD Model because of its ability to represent
graphs, has two separate operators for refinement. The
Create_Unit operator creates a new Unit from the refinable
Entry and also completes the Refinement Link between the
Entry and the new Unit. The Refine operator is used to
refine a refinable Entry to a Unit that already exists. In
this case, the ocperator completes the link from the Entry to
the specified Unit.

The following is a list of the major advantages of the
TRIAD Model over the Grammar Form Model for providing a
precise model which best represents software engineering
methods.
lu] Representation

- Directed graphs can be represented using the
Refinement Linkages in the TRIAD Model whereas only
trees can be directly represented in the Grammar
Form Model

- The TRIAD Model supports Secondary Links from Entry



164

to Entry thereby allowing the capability to
represent networks. The Grammar Form Model does not
have secondary links.

- The Grammar Form Model is best for representing
language based methods while the TRIAD Model is
appropriate for language type methods and other,
less structured methods.

- The TRIAD Model has a uniform view of method
definition and use, while the Grammar Form Model
uses a grammar for method definition and a form

- The TRIAD Model is more natural for expressing
methods than the grammar approach. The saoftware
engineering can express the method definition in a
representation as close to the method as possible.
No translation to a grammar is necessary.

The TRIAD Model uses a direct manipulation, incremental

approach to specifying and using a method, while the

Grammar Form Model requires the method to be defined as

a grammar, in disjoint sets.

The use of grammars to specify a method is different

from the classic use of grammars as recognizers of

sentences in a language. The grammar form is used as a

generator of grammars. The generated grammar being the

method specification.



165

4.2 DATABASE MODELS

The definition of a software engineering environment
has three components, an editor, interface and storage
facility. The obvious comparison of a software engineering
environment to a database is natural. CLlassical database
model implementations—--hierarchy, network and
relational-—are oriented towards transaction based
processing of fixed format fields. Little support for large
blocks of unparsed text is provided, particularly for
editing or searching [KENT79]. Therefore, the availability
of a database implementation to use directly without
modification for method support is not poséible. The
hierarchical model, like the grammar form is unsuitable for
method specification because of the difficulty in
representing directed graphs. Although the relational model
contains the expressive power to represent any structure
including directed graphs, it is difficult to capture the
semantics of the method stored in the relations. The
creation of data dictionaries and the Entity—-Relationship
and Semantic Data Model are solutions to the need to
represent not only the structure of the data, but the

meaning of the structure.



166

The semantics of data refers to the meaning of the
structure. Databases have a model for structuring data, a
query language for retrieving data from the structure and a
procedural language for writing extended commands and
programs to access the database. Each one of these features
is separate. The software engineering environment needs
processing embedded within the structure of the data
{method). By embedding the processing within the method,
processing can be defined for classes of data, which will be
available far all instances of the class when the method is
used. Processing which is invoked based on data access,
enables the environment to offer assistance to the software
engineer applying the method. This assistance would have to
be provided for each method by the person defining the
method. This is a different approach then that of writing a
single database program to control the user’s interactions
with the database. It is a local approach that attaches the
procedure references to the data, causing the interaction to
be triggered by access.

Although the relational data model could be used to
build a software engineering method representation, the
TRIAD Model captures the essence of software engineering
methods structure as atomic features. Further the TRIAD
Model provides support for incorporating the knowledge to
apply the methods with the structure, something the

classical models do not provide.



167

The Entity—-Relationship Model (E-R) proposed by Chen
attempts to capture the meaning of data by naming the
relations and the entities [CHEN761. The model is intended
to be built upon the relational model and used by the
Database Administrator at a cognitive level for describing
the data. The E-R model is naturally intended to be a
general model for the universe of database applications.

The goal in creating the TRIAD Model is to build a
specialized model capable of capturing the distinct software
engineering method support requirements. Although the E-R
model, like the relational model, has the expressive power
to represent methods, it lacks the method specific features
of the TRIAD Model.

The specification of the relationships in the E-R Model
are also present in the Secondary Links of the TRIAD Model.
The Secondary Links are named at method definition time by
the method specifier. The primary links (refinement) are
already specified as ownership links.

Several new data models have been proposed [BROD84,
TSIC821. These new models allow the database administrator
to create new data types that contain predefined
restrictions, attributes, processing functions and
relationships to other types. The classical data models
merely organized the data without explicitly allowing the
database user to use the schema other than to specify the

record and field names. In fact, the creation of a separate



168

data dictionary by several commercial database
implementations to help the user organize and remember the
many record and field names, illustrates this void in the
classical data models.

A final problem exists with most database
implementations. The data definition is arnalogous to the
madel definition in the TRIAD Model, however; the methad
definition can be interactively changed by tuning the
method. Most database implementations require the data
definition to be recompiled and the data translated to the
new structure. Both of these operations are usually done in
batch mode. To use a database as an implementation vehicle,
it must support dynamic changes to the data definition and
be capable of allowing embedded procedure references with
the data.

The most promising (and most complicated) new data
model is the semantic data model (SDM) which combines the
schema and data into a network [HAMMB811. Although the SDM
is appraopriate for method definition, it is complicated and
difficult to use. SDM is a much more general model for data
representation, while the TRIAD model is focused on

representing and supporting methods.



169

4.3 KNOWLEDGE REPRESENTATION FRAMES

Some software engineering methods are a first attempt
at applying artificial intelligence (Al) techniques to
software construction. Although most methods do not
automatically produce programs as an expert system would,
they are attempts at recording representations and the
knowledge of expert programmers in terms of the techniques
used to produce software. It is natural then that knowledge
representation ideas should be applied to software
engineering methods. A prominent knowledge representation
scheme is the Al frame [MINS75]1. The frame was proposed as
a model for use in computer vision, but since has been
‘expanded and applied to the representation of knowledge for
deduction as well as recognition. Basically a frame
represents a stereotype of a concept. It has fixed items
which are always present and slots for specific
information—-—instances of the concept. Thus, the frame
serves as a combined schema and storage cell. Demons are
also associated with the frame and are used to represent
procedural knowledge. Further, frames, may be comnected
together into a network of frames, thereby representing a

body of knowledge.



170

Although there are many similarities between Al frames
and the TRIAD Unit, there are several important differences.
The first major difference is one of purpose. AI frames are
used to not only represent knowledge, but also to support
the recognition of the concepts represented. The first
application of Al frames was to vision and natural language
recognition. Their use was extended to not only recognize,
but also show the path through the frames, thereby,
demonstrating the reasoning used to recognize a caoncept.

The use of demons is different from that of TRIAD
Procedures. The demons are used in the Al frame as
recagnizers and fire automatically once a concept is
presented for recognition. The Procedures attached to the
TRIAD Entries are invoked in a more orderly fashion, often
as the result of the user moving the cursor on the display
terminal. For example, the Al frame demons may all fire and
try to recognize a concept, whereas the TRIAD Procedure may
only be invoked if the software designer displays the
representation for a module on the terminal screen.

To support current software engineering methods, less
automatic reasoning is reguired. The TRIAD Unit is used
more as a storage entity, letting the software engineer do
the reasoning. Thus, the structure of the TRIAD Unit Class

is borrowed from Al, but the application is different.



CHAPTER V
SUPPORT FEATURES OF THE TRIAD MODEL FOR

SOFTWARE ENGINEERING METHODS

The TRIAD Model was designed to support the definition
and use of software engineering methods. This chapter
describes how the requirements for a model for software
engineering methods, which were described in Chapter II, are
met by the TRIAD model. The last section describes how the
features of the TRIAD Model support multiple software
engineering methods.

Four basic requirements were given in Chapter II for a

model to represent software engineering methods. They are:

o Represent the method structure,
le] Encapsulate the meaning of the structure,
o Provide the capability for expressing the rules and

procedures of the method use and
o The model must be capable of being easily implemented on
a computer so that computer based support can be
supplied to these methods.
The ability of the TRIAD model to represent the
structure of software engineering methods was informally and

formally given in Chapter III. The next section describes

171



172

those features along with some extensions derived from the
model which better support the method structure.

The next requirement, that of capturing the meaning of
the method structure, is accomplished in the TRIAD model by
the Method Definition Component. The Method Definition is
not only a flexible device for expressing scftware
engineering methods using a general model, but it is also
retained through Method Use as a reference and recording of
the method definition. The structural features of the model
entities are named, which includes the Component Categories,
Unit Classes, Attributes, Links and Procedures. These names
can be used both by the method definer and method user to
gain insight into the meaning of the method structure. The
names can be used in the query language, to extract
relationships between method ob jects. Further, the
Procedures can be created to analyze the method structure
and make the meaning clear. For example, the Call Structure
Diagrams (and other hierarchical methods) use the position
of the boxes within the diagram to not only represent calls,
but also scope and successor and predecessor relationships.
Procedures can be written to capture the meaning of the
position generally in the method definition, then at method
use, the Procedure can show the relationship of the actual
instances of the software within the Call Structure

hierarchy.



173

The third general requirement, that of a facility for
expressing the rules of the method is captured in the
Procedures. Finally, the general implementation

requirements are discussed in a later section.

5.1 REQUIRED METHOD STRUCTURE SUPPORT FEATURES

The TRIAD Model supports the representation of the
structure of software engineering methods as follows:

a} The Unit Class provides '"chunking" of method concepts
and the tags of the Classes provide names for the
software engineer to use,

o Refinement links allow trees, hierarchies and graph
based methods toc be represented,

o The Attribute provides storage for both long text
strings and variables describing the method concepts,

o Procedures to express method dependent knowledge based
on the conceptual chunks of the method. Further, the
procedures are invoked based on criteria such as access
mode and type of entity requesting access (software
engineer, tool, etc.) which are specified by the method
definer.

o A query language on Unit Classes, Components, tags,
Attributes and Links allows fast access to stored text

and fixed format data,



174

o Links to other units model secondary conceptual

relationships,

5.1.1 CHUNKING OF CONCEPTS

The partitioning of a method into conceptual chunks is
a natural way to subdivide a large number of entities. The
Unit Class is used to represent a concept in a software‘
engineering method. The Component Categories within a Unit
Class serve to subdivide the concept into related pieces.
Thus, the TRIAD Model initially provides a two level
approach to the organization of concepts in a method.
Further levels of detail can be introduced by the use of the
Secondary Links.

Since many methods are representaticonral, the TRIAD
Model, facilitates the expression of these methods. Each
Unit Class is a representational unit, say a box in SADT or
a bubble in Dataflow Diagrams. Within the Class, the
Component Categories describe the entities of the method.
In the case of SADT, this includes the input, output,
mechanism and control arrows and the descriptions of the

boxes.



175

Even if the software engineering method is not
representational, but procedural in nature, the TRIAD Model
is still effective for expressing the method. Steps in the
procedural method may be chunked together into one class,
representing a task within the method. The key idea is to
partition the method into workable and manageable entities.

Software engineering methods which are used to merely
organize textual descriptions of software can be easily
defined using the TRIAD Model. The Categories within a Unit
Class are used to subdivide sections of the text. For
example, one or more Unit Classes could be used to represent
the documentation of a program. The Component Categories
within the Unit Class would correspond to the major parts of
the document. A methaod to store the requirements of a
software project could be organized using the TRIAD Model by
grouping similar requirements together. For example, one
unit class may be for performance requirements, another for
functional and so on. Of course, if there are no
differences between the information describing performance
and functional requirements than only one Unit Class is
required.

Tags are attached to each Component Category in a Unit
Class. The tags are used as names for the Component
Categories, Unit Classes, Units, Entries, Attributes, Links
and Procedures. The query language uses the tags as objects

for searches of the information contained in a method.



176

Besides their use as reference strings, tags, when carefully

chosen, can impart semantic knowledge to the user.

5.1.2 REFINEMENT L INKAGES

Each Category in a Unit Class may be a refinable
Category. The refinable Category links are called
Refinement Linkages,; because they serve to refine a concept
from a Component Category of one Unit Class to another Unit
Class. The Refinement Links, which are the instances of the
Refinement Linkages, are used to support the organization
and chunking of concepts in the Units when the method is
applied. The navigation through the Units for browsing or
queries is done by using the Refinement Links as a default.

The Refinement Linkages are alsoc essential in modeling
the different types of graphical representations that are
often found in methods. Hierarchies are simply modeled in
the TRIAD Model by restricting each Unit Class to only one
Refinement Link pointing to it. If a Unit has more than one
Refinement Link pointing to it, then directed graphs are
easily represented. Directed graphs are applicable to such
methods as Dataflow Diagrams and program Call Structure
charts. Although cycles of Units can be created, the
processing of them may become complicated and the value of a

method making extensive use of cycles might be suspect. If



177

the intent of the method is to represent iterations through
the software life cycle, then the version feature of the
model implementation should be used to keep track of method

iterations.

5.1.3 ATTRIBUTES

Attributes attached to the Component Category provide
the means for storing as well as summarizing and describing.
Several software engineering methods consist primarily of
large blocks of text. For example, requirements analysis
methods and documentation support methods dictate the
content and procedure for accomplishing these respective
tasks. The Attributes in the Component Categories of the
Unit Classes for these types of methods often serve as
repositories for the text. In this case, the Categories in
the Unit Class are effectively used to provide further
organization of the text. For instance blocks of text can
be divided among the categories based on the method. A
documentation method illustrates this point. Manuals are
divided into sections and each section corresponding to a
Unit Class may be further subdivided by the Component
Categories. For example each command in the reference
manual can be stored in a separate Entry of a Component

Category. Such a structure imposed aon the information by



178

the method and supported by the TRIAD Model, greatly
increases the retrieval of relevant information contained in
the method.

The Attributes in addition to free form text, are used
for fixed format values (integers, reals, booleans and
words) . In addition to being used to store values
describing the Component Categories, the Attributes are used
to implement many of the following special features of the
software engineering method support, such as, Secaondary

Links,s Procedure References and extended commands.

3.1.4 PROCEDURES

The TRIAD Procedure allows the TRIAD Model to represent
local procedural knowledge about the contents of the Unit or
an individual Entry. Coupled with the rule based invocation
criteria,.the TRIAD Procedure supports methods by providing
a means to encapsulate local knowledge such as the design
rules in the Jackson Method. A Procedure could be written
to diagnose a structure clash and perhaps suggest
alternative designs to avoid the clash. The Procedure is
provided to the method definer as a means for customizing a
method specification. It is also the vehicle for storing
predefined queries, tool interfaces and the definition of

simple automatic processing steps.



179

S5.1.3 QUERY LANGUAGE

The greatest difficulty in processing information
stored and produced by the application of methods is the
strong reliance by many methods on natural language text.
Text strings are difficult and time consuming to process and
usually can anly be searched by examining each character
individually. The query language is important for
supporting methods because the ability to formulate gqueries
and quickly retrieve information is the expected benefit of
encoding and keying information into a computer. The query
language is the major vehicle for utilizing the stored
information contained in the TRIAD Model Units. Some

example queries using the Call Structure example include:

o List all modules in th% system,

o Find all modules rated as difficult to implement,
(a} Show all modules not yet completed,

o Compute the number of man-hours expended over the

estimate and
o Display a graph of module completion dates (actual vs.
estimated).
Al though the quality of a query language is largely
implementation dependent, the TRIAD Model has been developed
with the objective of supporting a robust query language
easily. The TRIAD Model supports this diverse sampling of

queries by allowing:



180

o The creation of tags to name campaonents (ta use as
ob jects of queries),

o Attributes to store method definer specified values,

o Procedure references to process attribute (all under
method definer control),

o Refinement links to navigate through the Units of the
software engineering method for logical and faster
searching and

o Secondary links to other units to improve navigation
performance and to search the infarmation contained in
the method based on secondary relationships.

The actual syntax of the gquery language is naot dictated
by the TRIAD Model and the design is left'up to the
implementor. However,; the syntax of the query language
should be easy to use especially for casual and novice
users. In addition, it should still be powerful enough to
satisfy the expert user.

A list of available commands can be easily extracted by
the query language using the above example. Or the
description of a particular command can be extracted by the
query package by searching all entries of the command
component category for the specified command name and
displaying the accompanying command description when the

name is located.



181

S5.1.6 SECONDARY LINKS

In addition to the Refinement Linkagess; which are used
as the primary organization of Unit Classes, additional
Secondary Links can be defined and used to describe
relationships other than refinement. 0One use of Secondary
links is to tie all Units of the same Unit Class together.
Each Unit can then be processed by merely following the
Secondarv Links. A more complicated use of Secondary Links
would be to create alternate paths through the refinement
graph. Another example of Secondary Link usage is to bind
requirements documents to actual software code which will be
developed later in the project. By this use of Secondary
Links, it is possible to associate requirements created in
the initial project phase (and created by a different
method) to software designs (and eventually code) created

later in the software life cycle.

5.2 REQUIRED IMPLEMENTATION FEATURES

The requirements for an implementation of the TRIAD
model given in Chapter II are:
o Easy to use interface,

o Efficient and fast storage and retrieval of Entries and

UnitS’



182

o Graphic views of Units and their Refinement Link
structures,
o Robust and easy to use text editor and

o Flexible tool interface.

5.2.1 USER INTERFACE

Much of the user interface is dependent on the
implementation vehicles and the implementor; however, the
TRIAD model encourages the organization of the user
inter face about the Component Categories and Entries. It is
intended that the Component Category will usually be a
compact entity in the method. Further, the corresponding
Entry, when filled out, should fit on a single display
screen., The Attributes are associated with the Component
Categories and their values with the corresponding Entries,
therefore, the commands, help and tutorial services should
be similarly organized about the Component Categories and
Entries. Such a design will help the method definer to
create extended commands that are associated with the
Component Category that is the source (or target) of their
operation. (Extended commands are also defined in the same
manner as procedures. The difference between the two is
that extended commands must be explicitly invoked, usually

by the user. Procedures as already described, are invoked



183

indirectly based on the user’s actions.

5.2.2 STORAGE AND RETRIEVAL MECHANISM

The TRIAD model consists of only a few basic elements
which must be stored. This feature facilitates the use of
either a database management system or physical storage
scheme. Tﬁe Component Catégories and Attributes are the two
entities that must be stored for the Method Definition
Component. The Unit Classes and Refinement Linkages are
constructed by relations or pointers. The Secondary Links
can be implemented as Attributes. Similarly, the Entries and
Attribute Values are the two basic elements of the Method
Use. The Refinement Links, Component membership and Unit
membership are constructed from relations or pointers.

A graphic interface package is supported by the TRIAD
model by simply transforming the Units into icons and the
Refinement and Secondary Links into arcs. The placement of
the icons on the screen in a left to right, top to bottom
sequence is dictated by the sequence of the Entries which
refine to Units within each Unit beginning with the Initial

Unit.



184

S.2.3 TEXT EDITOR

Text editor support in the TRIAD model is accomplished
by clearly del ineating the text from the method structure.
Text is stored in Attributes associated with Entries. This
separation permits the text editor to be invoked upon a text
string conta@ined in an Attribute much as any external tool.
After the useér js done editing, the text 1s replaced and
control is returned to the implementation for the next user

action.

5.2.4 TOOL INTERFACE

To effecti vely use existing tools, the TRIAD model
allows tools to be invoked without direct Method Use
requests. This is accomplished by treating the tools as
Procedures and using the rule based invocation feature of
the Procedures to call the tools.

Furthery the naming of the Attributes and the
separation of the Attribute values from the method
structure, allows the user to extract (or insert)
information in the Method Use by using the Attribute name
and calling an implementation provided primitive routine to

do the extraction (or insertion).



185

Batch tools are easiest to int -jrate because the data
can be extracted, the tool invoked (control relinquished),
and th”eh results replaced (if necessary). Interactive tools
follow the same sequence but many times over, The ease of
integrating interactive tools depends largely on the
facilities provided by the operating system on which the
model is implemented.

The TRIAD Model supports tool interfacing by providing

data access routines and a comprehensive facility for

invoking tools.

S.3 MULTIPLE SOFTWARE ENGINEERING METHODS SUPPORT

There are two ways to provide support for multi.ple
software engineering methods. The first technique is to
provide translators from one method to another. In addition
to the effort involved in writing these translators, the
difference in representation between the same concept in
different software engineering methods poses a difficult
task for the translator. For example, a data oriented
‘software engineering method, such as Dataflow Diagrams does
not directly map to a Call Structure Chart. Different data
elements may have separate processing bubbles, but the
system structure can aggregate all of the processing in ane

module.



186

The translators must be bi-directional, since the
cyclic nature of software development may require that if an
error is discovered in the coding phase and fixed there,
then the correction should be reflected in the program
design and system design. Theoretically this should not
happen, because an error detected in the coding phase should
cause a change in the program design first and then the
coding change. The reality of the situation is that designs
are updated after the fact (if at all). This is primarily
true if the praogram coder was not the designer. From the
coder’s point of view it is faster to make the change first
(especially if it is a small change) and then update the
design later.

If more than one software engineeri;g method is used
for a particular phase, for example, Jackson Method and
pseudocode for coding, then these translators would be run
constantly to keep the software representation current in
both methods.

The second techrique for supporting multiple software
engineering methods is to use a common representational
scheme. The most direct approach of this technique is to
use a database management system to store all of the project
data, including the method representations. Some methods;
notably PSL/PSA, claim to have accomplished this, and can
support all methods [TEIC77]. 1In fact several popular

methods have been implemented using PSL/PSA. Extensions to



187

PSL/PSA provide dictionary features’and support routines. A
meta-language processor allows a language based method to be
specified. However, PSL/PSA is still a language based
Database Management System approach to method specification.
It is unclear how effective PSL/PSA is as a specifier of
software engineering methods when 1t is itself a software
engineering method. [CHIK831 The TRIAD Model is a much more
general mechanism for method representation then PSL/PSA.

This database approach depends on the selection of an
appropriate database system that uses a data model which is
capable of representing software engineering methods easily
and completely. Chapter IV has already discussed the
problems with using database management systems to support
software engineering methods.

The TRIAD Model supports the second technique of
multiple method support by using a model specifically
designed far methods., Each method is defined as separate
Units. Secondary Links between different methods and
Procedures can be used to translate Entries and Attributes
between methods. Of course the specification of the
appropriate link types would still need to be done by a
buman, the method specifier. However, the environment
generated from the TRIAD Model specification of the method
would do the translation dynamically. This feature makes it
very easy for a software engineer to switch methods and view

the same software in a different way. Figure 15 shows a



188

possible arrangement of several software engineering
methods. The methods are organized around a software life
cycle model. For each Unit Class representing a phase are
several subordinate Unit Classes each representing the

Initial Unit Class of a different method.



Project | Master Accounting
Phase (More?) | Requirements
Phase (More?) | Design

Phase (More?) | Coding

¥

189

Phase | Coding l 4 ;
(More?) | Pseudo Code | 7 Y
(More?) | Call Struct. | 8 .
(More?) | Jackson Meth. | 9

L*-//////// \

Method | Jackson I e %

i
/
Method | Call Struct | a/
7/
Method Pseudo Code | 7
-,
Phase | Requirements I 2
Method (More?) I SREM l S
Method (More?) I SADT | &

Figure 15. Multiple Software Engineering Methods



CHAPTER VI

IMPLEMENTATION OF THE TRIAD MODEL

Al though the focus of this dissertation is on the model
for representing software engineering methods, the model was
implemented to verify its design and to demonstrate the use
of the model. This chapter describes aspects of that
implementation. AN understanding of the implementation is
not necessary to understand the model, therefore, this
chapter may be skipped by the reader who is not interested
in the implementation.

The implementatioh of the TRIAD model represents a
large piece of software containing several thousand lines of
source code. Rather than describing the actual
implementation in detail, this chapter presents interesting
problems encountered during the implementation. The
solutions and reasons for the solution are also given. The
complete implementation is described in the documentation
method of the TRIAD multiple software engineering method.
The TRIAD software engineering method is described in the
next chapter. The TRIAD model operators defined in
Chapter 11l provide a detailed description of the necessary

functions that must be provided to adequately fully the

190



191

TRIAD model.

The Grammar Form Model was used as the basis for an
implementation of a method specification and environment
generator called TRIAD. This implementation was done on a
DEC VAX using the C programming language running under the
UNIX operating system. (DEC and VAX are registered
trademarks of Digital Equipment Corporation. UNIX ig a
registered trademark of Bell Laboratories) This
implementation of TRIAD had a strong grammar orientation.
The method specifier had to enumerate all of the symbols
(tags) and the production rules manipulating the symbols to
create forms for a method. Under a contract from IBM, the
TRIAD concepts were implemented on an IBM 4341 computer
running VM/CMS. To quickly implement TRIAD > an interpretive
programming language REXX [IBMR] and the system editor
L IBMX] were chosen as implementation vehicles. Learning
from the UNIX implementation experience, the VM
implementation abandoned the Grammar Form Model, especially
at the user interface level. The method specifier directly
manipulates the Component Categories and Unit Classes rather
than productions and symbols to create entities representing

method concepts.



192

6.1 IMPLEMENTATION VEHICLES

The interpretive language, REXX, was chosen for the IBM
implementation because it was designed to work closely with
the editor, XEDIT. In fact, it was possible to invoke XEDIT
from REXX and to issue editing commands within a REXX
procedure. Since a major part of a software engineering
enviranment is a text editor, this design decision
eliminated the writing of an editor. Of course the
resulting implementation was slower than if TRIAD had been
implemented using a compiled language such as PL/I or
PASCAL, however, the concepts embodied within the TRIAD
model were adequately demonstrated.

Since XEDIT was accustomed to working on entire files,
each Unit and Unit Class is stored as a separate file.
Chapter VIIl discusses alternative methods of storing the
Unit Classes and Units.

XEDIT has several features which greatly facilitated
the implementation of TRIAD. Each line in a file being
edited by XEDIT can be assigned an integer representing its
display level. By setting a global digplay range, only
those lines whose display level falls within the range will
be visible. This feature allowed the mixing of TRIAD
control lines and method specific text with the entries.
The TRIAD control lines were assigned a different display

value then the method lines. For user displays, the display



193

range was set to just the method lines. If a TRIAD REXX
routine was manipulating the file, then all lines would be
made visible (only to the REXX routines the screen display
is maintained until the REXX routine exits). Although this
technique is not generally applicable, since it depends on
an esoteric feature of the editor, it did simplify the
storing of the structure and the actual data by allowing the
two types of data to be stored together in the same file.

The second valuable XEDIT feature was the label
facility. Eight character labels can be assigned to any
line in a file being edited by XEDIT. Thereafter, these
lines can be referenced directly by using the labels. This
feature was used extensively to jump directly to a specific
entry on the screen display, thereby eliminating time

caonsuming free string searches.

&.2 SYSTEM ORGANIZATION

The implementation is loosely divided into three major
graups of routines: Tuner or Method Definition Component,
Editing or Method Use Component), and System Integration
Library (common sub~routines). Since TRIAD operates under
XEDIT, each command is implemented in REXX as a separate
routine, stored in a separate file. The best way to view

the function of the TRIAD components is to look at the



194

commands implemented.

The Tuner contains commands to create Unit Classes and
Component Categories within the Unit Classes. Commands also
exist to modify existing method specifications. The Tuner
commands have been already described in Chapter III as the
TRIAD model operators.

The editor provides similar commands for the creation
of Units from the Unit Classes specified in the software
engineering method. The focus of this dissertation is on
the model for representing software engineering methods.

The editor merely creates instances of the Unit Classes
defined using the Tuner, therefore from a conceptual point
of view,; the elements of the model are all covered in the
Method Definition Component. Thus, a detailed discussion of

the editor is not within the scope of this dissertation.

6.3 TUNER SUPPORT FEATURES

To help the method designer create a method
specification, TRIAD maintains three lists. The first list
is the names of all the Unit Classes defined. The second
list is all of the Unit Classes referenced; but not yet
defined. These lists are used by TRIAD to insure the
uniqueness of the Unit Class names. The lists are also

helpful to the method designer, who can specify a command



195

which displays the lists an the terminal screen for
reference. Thus, if the method designer is defining the
method top down,; a display of the undefined list will show
the names of the Unit Classes that must still be specified.
When the method specified using TRIAD is applied using
the TRIAD Method Use Component, the list of Unit Classes
shows all the Unit Classes defined. A third list is created
when a method is applied which contains the names of each
Unit, its Class and serial number. This list is used by the
environment to efficiently process the Units. As with the
other two lists, this list is also a valuable reference for
the software engineer applying the method. It summarizes
the method use by displaying in one place all of the Units,
which is particularly useful for a software engineer who is
just browsing. Figure 23 in the next chapter is one example

of this list.

6.4 HARDWARE FEATURES

TRIAD was designed to use an IBM 3279 terminal which is
a synchronous, color terminal. It has a standard typewriter
style keyboard with additional keys for cursor movement and
screen display control. Twelve function keys are also on
the keyboard which can either be bound to command strings or

detected by REXX programs as special function keys.



data

196

Since the terminal is synchronous; an entire screen of

is transmitted each time the enter key is pressed.

Cursor movement is under lacal terminal control and cannot

be detected by a program executing on the host computer.

This characteristic of the terminal makes protection of

screen fields and the tracking of cursor movements difficult

if not impossible. However, by using the protection feature

of the 3279 terminal, which is under program control, the

user’s editing actions can be limited to only program

designated areas of the screen.

XEDIT divides the screen into several blocks of lines

consisting of the following:

[w]

o

Status line - infaormation about the file currently being
edited,
Message lines -~ space to display error or other messages

from the editor or REXX programs. This space can
overlay the file area,

File area - block of lines where the edited file is
displayed and changed,

Current line - a line within the file area which is the
default target for all line oriented editing commands,
Reserved area - block of lines within the file area
reserved by XEDIT commands. The user cannot change this
area and

Command line - Line to enter editor commands.

TRIAD uses these blocks as follows to create a useful



197

display for software engineering methods support.

[s]

Status line - changed to show the user TRIAD specific
information such as the number of Secondary Links,
Attribute and queries attached to the Entry under the
current line,

Message lines - placed as an overlay at the top of the
file area. The superimposed message can be cleared by
pressing the enter key and the original screen display
will be uncovered,

File area — used to display the Unit Class or Unit. It
is kept as large as possible to minimize user

necessitated screen scrolling,

Current line - retained in the center of the screen,
Reserved area - Three lines are reserved at the bottom
of the file area. The first two lines display the

commands bound to the function kevs and the third line
shows the names of alterﬁative menus which contain
different key bindings and

Command line - Retained at the very bottom of the

screen.

Figure 156 shows the screen layout.



198

Status

Im->

Message area

Current line

DMDD

Command Menu

Available Menus

Command line

Figure 16. TRIAD Screen Layout

6.5 VISIBILITY

A difficult problem with any computer system is
organizing the display such that the right information is
available for inspection by the user. Since the display is

limited to the finite size af the computer terminal, it is



199

nat always possible to fit all of the infeormation on the
screen at one time. Further, it is difficult to filter out
information without destroying the user’s perception of the
structure of the information being displayed. This problem
is best illustrated by caonsidering overlapping informatiaon
within software engineering methods. For example, a program
coding method may record information about the program and
its development progress such as start date, estimated
campletion date, size, estimated size, etc. This
information is of primary interest to management and should
reside in a management method. However, the sogftware
engineer generates the information and has a right to have
access to it. The approach taken by TRIAD to solve this
probleﬁ is to replicate the information in both methods
(program coding and management) and use Procedures to
propagate a value whenever it changes. While this solution
solves the access problem to overlapping information, the
digplay problem still remains.

When the software engineer is involved in coding, the
presence of the management information is unnecessary. To
temporarily hide information, TRIAD attaches an Attribute
called "VISIBLE" to each organizer. This Attribute contains
a single value which must match the user set visibility
mode. A visibility mode of ALL causes all organizers to be
displayed regardless of their VISIBLE attribute value. This

feature allows the software engineer to restrict the display



200

to only coding related organizers while doing coding,

thereby simplifying the display.

6.6 GRAPHICS SUPPORT

The TRIAD VM implementation uses graphics to present to
the software engineer a pictorial view of the software
engineering method and the resulting software application.
[HARTA871 (The TRIAD graphics interface was implemented by
Ronald Hartung) The graphics interface is implemented using
GDDM [IBMG] and operates on an IBM PC/GX synchronous
terminal.

The simplest use of graphics in TRIAD is to draw
graphical images on the screen and allow the user to store
them in an Entry for subsequent display. This feature
allows graphical images to be integrated with text, which is
good for documentation methods.

The primary use of graphics in TRIAD is to provide the
software engineer with pictorial views of the method (Unit
Classes) and Units. Each Unit Class has an Attribute which
defines an icon to represent it. The icons can be designed
by the method designer using the GDDM based iconic editor.
By invoking a command to draw a graph of the method, the
TRIAD graphics interface uses the icon definitions and

refinement links to produce a graph of the method. In



201

addition commands are provided to manipulate the display by
zooming and panning. Further, a Unit or Unit Class can be
selected for display in the normal text mode, thereby
allowing the software engineer to view the entire method’s
Units as a graph and edit it is a textual unit. The TRIAD
gquery language (TMEL) can also be used to select a region of
the method which is then displayed by the graphics interface

as a graph.

&.7 STORAGE AND RETRIEVAL OF TRIAD MODEL ENTITIES

Currently TRIAD stores each Unit Class and Unit in a
separate file. Since VM does provides data protection only
at the file level, and TRIAD should protect the Unit at the
Entry level, an alternative means of protection is needed.
Using the VM file system TRIAD provides just read-only
access to methods and instances of methods stored on a
different disk from the users. However, any modifications to
a Unit Class or Unit are made on a copy of the UJnit Class or
Unit and stored on the users disk. GSince database
management systems have solved the multi-user access
protection problems, a suitable database management system
was sought. The IBM relational database product, SQL was
used to implement a storage and retrieval facility [DAVEB&].

Reiations were created to hold the Entries and Attributes.



202

Since response time was already long, the use of the SQL
database management system exacerbated the condition.
Chapter VIII discusses possible sclutions to this problem

that need further investigation.

6.8 TRIAD MODEL RUERY LANGUAGE

An important feature of an software engineering
environment is the ability to query the stored information.
The user of a method wants to query on the structure of the
information contained in the maodel as well as its content.
Queries can be constructed to search only Entries of a
specified Category (tag) in Units of a specified Class. The
query language, TMEL, is modeled on SEQUEL, where a query
can be just on the structure of the Units (maps directly to
the SAL relations) then it is passed directly to SQL for
processing. In other mare complex queries, a TRIAD query
processor parses the query into two parts—--structure and
content. The structure part is generated as a SQL query and
the results of the query are searched for the content part

of the query by TRIAD.



203

6.9 TOOL INTERFACE

Tools are invoked either explicitly by the user the
same way an extended command is, or automatically as a TRIAD
Procedure is. The means and criteria are controlled by the
method definer. In either case,; the tool interface for any
tool is created using the TRIAD Procedure facilities. All of
the operators are available to extract data from the
Attributes and then invoke the external tool.

Tocls are generally one of two types——Batch or
Interactive. Batch tools are the easiest to create
interfaces for. The data is extracted from the Attributes,
placed in a file and the tool is called. Upon completion,
any output is returned to the appropriate Attributes. Of
course, for large volumes of data from many Attributes, such
an interface can be quite large and cumbersome, but not
complicated

An interactive tool that requires data from the
Attributes interleaved with user responses,; is much more
difficult to interface. If the host operating system which
the TRIAD model is implemented under, supparts a filter
between the user and the tool, then this type of tool can be
interfaced. For those operating systems that do not support
a filter, the tool must be abandoned or an extensive amount
code be written to simulate the tool’s interactions. The

user responses can then be placed in a file and the tool



204

invoked as a batch tool. Of coursey, if partial computations
are made based on the user input then this me.“md probably
would not work either.-

I't is important to note that the problems with
interactive toolrinterfaces are nat specific to the TRIAD
model, but occur when interfacing any interactive tool to
another system.

To support software engineering methods, an interface
from the TRIAD generated énvironment to existing tools is
essential. Such an interface facilitates the use of
existing tools without re-coding them to work within TRIAD.
The tool interface was demonstrated in the TRIAD
implementation with several tools.

The Document Composition Facility (SCRIPT) [IBMD] was
simply integrated by creating an Attribute which indicates
the text stored in the Entry is SCRIPT input. A Procedure
was then written to extract text from the Entries (an SIL
provided function) and invoke SCRIPT. The output from
SCRIPT was sent directly to the printer, although it could
be returned to an Entry within the Unit specified for
holding formatted output. The addition of special
attributes to contain SCRIPT commands, which for instance,
when used by a Procedure, extracted the Entry name (another
SIL provided function) and made it a heading using the
SCRIPT heading command. This approach can be expanded by

using generic formatting commands in the Attributes. The



205

Procedure extracting the text will use a translation table
to perform the translation from generic to specific
formatter commands. This approach creates independence of
formatter, allowing not just SCRIPT but other formatters to
be used.

Another use of the tool interface was to extract source
code entries and send it to a compiler for processing. This
interface for PL/I also extracted the error messages from
the source listing, which in PL/I are placed together at the
end of the source listing. The messages were positioned
following the offending statements and placed into an Entry
created for the purpose or holding the source listing. The
programmer is thus provided a compact view of the program

and any caompilation errors.

6.10 TRIAD PROCEDURES

Several different uses for Procedures were discovered
during the application of the multiple software engineering
embodied in the TRIAD method. The first use of a Procedure
was the propagation of the tag from the Unit to the Entry
refining to the Unit. For example, the software engineer
may create a "MODULE" Unit Class for each module in a Call
Structure Chart. In the header of the "MODULE" Unit Class

is a space for the module name. Upaon exit from the creation



of an instance of the "MODULE" Unit Class, a Procedure

206

is

invoked to copy the name of the module to the Entry refining

to the module Unit

(See Figure 17).

\'\
COMPONENT | Y | 12
MODULES (MORE?) | Newunit | 17
MODULES (MORE?) | NewCategory | 22
s
MODULES (NewCategory ? | 22

\__/-

Figure 17. Example of Information Propagation

The next use for a Procedure was necessitated by the

TRIAD implementation vehicles. Since Rexx is interpreted

and Xedit invokes a Rexx routine
the same name and of type XEDIT,
be stored in a Unit and still be

was to create a Procedure called

by searching for a file of
the Rexx source could not
executable. The solution

PULLCODE which is invoked

whenever the user positions the Cursor on "source code"

Entry. PULLCODE uses an Attribute associated with the Entry

to obtain the file name and file

type. With this



207

infaormation it inserts the file into the Entry’s text area.
When the Entry is exited, a Procedure is invoked which
provides the user with the option of saving or discarding
the inserted code.

Procedures were also used to create syntax template
editors for Rexx and PL/I. The editors are invoked by
entering an Entry with the source code Attribute, which
gives the name of the source code compiler. Templates are
bound the terminal function keys and a menu is displayed
showing the bindings and the statement types generated by
pressing the different function keys. The user merely
positions the terminal cursor at the appropriate place to
insert a language structure and presses the appropriate
function key to generate the desired structure.

Procedures are also used to automatically update the
TRIAD help system based on the user modifying the system
documentation. The insertion of a new command in the list
of commands (LISTOFCO) Unit causes a Procedure to be invoked
which inserts the new command name and command description
obtained from the Entry into the TRIAD help system.

The TRIAD method was applied to the development of
TRIAD. 1In particular, the MAJORCOM (major component) and
MODULES Unit Classes were used to partition the many TRIAD
routines into appropriate categories, and thus represent a

system Call Structure Chart.



208

The use of TRIAD provided much insight into the
interface design and the usage problems created by adding
semantics to the TRIAD model. Making the TRIAD user aware of
existing Attributes, Secondary Links and commands (queries)
was one problem discovered chrough the use of TRIAD in

TRIAD.

6.11 USER INTERFACE

A key issue in the construction of any software today
is a good user interface. O0Often referred toc as "user
friendly", the goal with TRIAD was to produce an interface
so that the user would never be in a quandary on how to
accomplish the next task.

The section on hardware features described the screen
layout, which was crafted so that the user would see the
list of available commands bound to the function keys fﬁom
which to choose the next command. Since TRIAD is a user
active type of system (the user must enter a command rather
than selecting from a menu or answering dialogue questions),
the menus are vital to keeping the user aware of available
options. The menu and function key binding concept is
carried a step farther, by changing the bindings and menu
based on the user’s previous action. For instance, if the

user’s previous command was to create a new Component



209

Category, then the bindings and menu would be set to those
commands to edit (add/delete Attributes, Secondary Links and
Procedure references) a Component Category. The ultimate
purpose of this feature is to only present the user with
those commands which are valid (based aon previous actions
and current display) and to anticipate the next likely
command.

TRIAD commands are designed to be single action and not
have za2ny perameters. If parameters are required, then the
REXX procedures implementing the command will solicit the
required parameters from the user by way of a question and
answer dialogue.

Help with commands is provided to tﬁe user in two ways.
If the user knows the name of the command then entering HELP
followed by the command name will produce a brief
description of the command in the message area of the
screen.

The other help system is modeled after the CMS help
system and presents the user with a table of all available
commands from which the user selects one by placing the
cursor aver it and striking enter or PF key 1. The command

description is then displayed on the screen.



CHAPTER VII

DEMONSTRATION OF TRIAD MODEL

Several software engineering methods were used as the
basis for establishing the requirements for a model to
represent methods. In this chapter,; two methods will be
defined using the TRIAD model to verify the design of the
model and to demonstrate the effectiveness, completeness and
support features of the model. The Jackson Method will be
defined first. The example from Chapter II will be used to
show the application of the TRIAD defined Jackson Method to
a software design problem. The second example is a multiple
software engineering method developed to support the
development of the TRIAD model implemeritation. Each of the
multiple methods is briefly described and two of the methods

are shown in detail.

7.1 JACKSON METHOD

Jackson Method, as described in Chapter II uses a few
symbols to create a view of software (data and control
structures) which enables the software engineer to design

modules. The objects of the method are boxes and lines

210



which are arranged hierarchically to reflect a top down,
left to right order. The boxes are used by the designer to
partition the module or data structures into groups of
processing actions or substructures, each represented by a
box. The lines between the boxes are used to arrange the
boxes into a hierarchy. Three types of boxes are possible
in the Jackson Method, each representing a different
processing or data structure construct. The boxes are
differentiated by the presence or absence of a symbol in the
upper right hand corner oi the bax. A box with no symbol
represe%ts a sequence of processing actions or data elements
and the actions are done according to their position in the
hierarchy or the data elements are ordered according to
their position in the hierarchy. A box with an asterisk (%)
in the upper right hand corner corresponds to an iteratioaon
such as a DO or REPEAT statement in a programming language.
For a data structure, the iteration box represent a
repeatable data structure or an array of data elements.
IF-THEN-ELSE or CASE statements are represented by the
selection box which is signified by a small circle in the
upper right hand corner of the box. The selection box for a
data structure represents several data structures redefined
on the same space. Far instance, the REDEFINES statement in

COBOL or the VARYING CASE RECORD in PASCAL are examples of



2le

the selection for data structures.

To define the Jackson Method using the TRIAD model, the
method objects are matched to the model elements. Each baox
type is defined as a separate Unit Class. Since the boxes
are similar, the sequence box will be discussed in detail.
The initial Component Category contained within the sequence
Uni% Class will have space for the name of the box. An
Attribute of type text will be associated with the Category
to hold the description of the processing actions the bux
represents. Another Attribute specifies the name of the
shape of the symbol, in this case a box, that the user
interface will display. A second Component Category is
defined to contasin the line between this box and the
children boxes, which will be represented as Units of the
correct Unit Class. The Refinement Link fraom this Entry to
another Unit can be to any Unit of the three classes. This
Component Category is repeatable so that any Unit can have
more than one Eniries in the Component which will create
Units subordinate to the Unit containing the Entries.

Figure 18 shows the user view of the Unit Class for the
sequence box as created using TRIAD. The Attributes are not
directly visible to the user and are present to show their
relationship to the Component Category. The visible text is

shown in bold type.



Attributes: (iconibox)
Attributes: (description; text)
Sequence | | Unit Number

Attributes: (repeatables)
Attributes: (refines tosbox, obox or #*box)
Subordinate Praoc. | | Refinement Link

Figure 18. Sequence Unit Class for the Jackson Method

Returning to the name and address file example of
Chapter 11, the application of the Jackson Method defined
using TRIAD would produce a tree of Units as shown in
Figure 19. Each Unit is shown in this figure as the user
would view it, i.e. the Attributes are not shown. This
figure shows the TRIAD model definition of the Jackson
Method. The graphic package will be able to display this
example using the familiar Jackson boxes as was originall
shown in Figure 7. Such a graphic interface would be
essential to successfully use the TRIAD model for the
Jackson Method, since the arrangement of the boxes is

critical for the user to understand the design.

213

Y



214

Sequence I Frocess Transaction | Unit Number 1
Subordinate Proc. | Valid | Refines to 2 ‘\\\
Subordinate Proc. | Imvalid | Refines to 3 \\<\\
¢
Selection | Valid | Unit Number 2 )
Subordinate Proc. | Update Filel Refines to 4
Subordinate Proc. | Print Rpts.| Refines to 5 \\\\y/
\\\
NV
Selection | Invalid | Unit Number 3 Y
/A
Subordinate Proc. | | Refines to /
—mm——eee

Selection

Update File ' Unit Number 4

Subordinate

Proc. | l Refines to

Selection ,

Print Reports | Unit Number 5

Subordinate

Proc. | | Refines to

Figure 19. TRIAD Application of Jackson Method



215

This example shows that the TRIAD model does generally
represent the Jackson Method using the three Unit Classes
each cansisting of two Component Categories and appropriate
Attributes. Further, Attributes describe the Unit Class as
an icon so that the user can see and manipulate the method
graphically. By applying the TRIAD defined method to a
software design problem, a representation of the software in
the Jackson Method is quickly realized.

This example merely demonstrates that the TRIAD model
is capable of representing at least one method. The next
section expands the use of the TRIAD model to several
methods and demonstrates how features of the model such as
Secandary Links and Attributes can be combined with the
implementation to assist the user in the development of the

software.

7.2 THE TRIAD METHOD

A TRIAD generated multiple software engineering
environment for developing software was created and used to
document the TRIAD implementation. This method, called the
TRIAD Method, was loosely based on standards used to
maintain existing software (a relevant example to the

research sponsor). The method focused primarily on software



coding and testing,; but also contained Unit Classes
dedicated to requirements, documentation and management.

The following software engineering methods are
contained in the TRIAD Method:

o Life Cycie,

o Documentation,

o Management,

fa} Requirements,

a} Program Structuré,
a} Pseudo Code and

o Coding
Table 14 shows each Unit Class, its corresponding
method and a brief description for the TRIAD multiple

method.

ales



Unit Class |

PROJECT
PHASEO
PHASEI
PHASETII
MEMBER
SCHEDULE
REVIEW
HISTORY
USERSMAN
INTRODUC
TERM
USAGEEXA
LISTOFCO
FUNCTION
FUNCCHAR
CONFIGUR
RATIONAL
HUMANFAC
MAJORCOM
MODULES
L IBRARY
PROSEPRO
MAKE
DATASTRU

Table 14. TRIAD method Unit Classes

Method Supported | Description

Start Unit Class
Project Objectives
Overall Architecture
Programming Logic

Software Life Cycle
Software Life Cycle
Software Life Cycle
Software Life Cycle

Management Project Participants
Management Schedule
Management Review

Documentation
Documentation
Documentation
Documentation
Documentation
Documentation
Requirements
Requirements
Requirements
Requirements
Requirements

History of Project
Users Manual
Introduction to Manual
Terms used in Project
Usage Example

List of Commands
Functional Overview
Functional Characteristics
Configuration
Rationale for Design
Human Factors

Program Structure
Program Structure
Program Structure
Pseudo Code
Coding

Coding

Ma jor Component
Modules

Library of Modules
Prose Prolog

How to Compile and Link
Data Structure




218

The TRIAD method is primarily a life cycle model, which
was used to organize the software development process. The
Initial Unit Class is the Project Unit Class which owns the
classes for the other methods. The first method is the
software life cycle and is represented in the Unit Classes
PROJECT, PHASEO, PHASEI and PHASEII. Phase O is the project
objectives and reflects the initiel planning for the
implementation. Phase | describes the overall architecture
of the TRIAD environment and represents the system
regquirements, design and reasons for the design. Finally,
Phase Il is the praogramming lagic of the implementatian.

A management method is represented in several Unit
Classes by capturing data relevant to the process of
creating software. Rather then being an isolated set of
Classes, these Unit Classes are referenced throughout the
other method Unit Classes by refinement links. The Unit
Classes MEMBER, lists all of the project participants and
their addresses and phone numbers. The Unit Class SCHEDULE
is used to track the time and effort expended on the
software development. Finally, the REVIEW Unit Class is
used to summarize the project meetings and record the
progress on the software development.

The documentation method consists of four Unit Classes

which describe the composition of the users manual. An



219

additional Unit Class is used to record the history of the
proiject. It has content that is both of value as
documentation and also for the management of the project.
The documentation method Unit Classes are HISTORY, USERSMAN,
INTRODUC, TERM, USAGEEXA and LISTOFCO.

The SCHEDULE and REVIEW Unit Classes are part of a
management method, because they record data on the progress
of the software development. This information can be used
by the project managers to make decisions concerning the
progress of the development and take actions to solve any
problems identified by the information contained in the
units.

The requirements method is composed of the Unit Classes
FUNCTION, FUNCCHAR, RATIONAL, HUMANFAC and CONFIGUR. Each
of these classes focuses on particular requirements of the
software, namely, overall functions, functional
characteristics, rationale behind the design, human factors
and system configuration.

The software production is supported by three
methods—-—program structure, pseudoccode and coding support.
The program structure method organizes the software major
camponents (MAJORCOM), libraries and modules,; with a Unit
Class corresponding to each organizational type. A major

component is composed of modules as is a library, however,



220

the library is used to store common routines, while the
major component represents different processing sections of
the project. The Refinement Linkage from a major component
into a modules Unit Class represent the calling of a mcdule.
The refinement linkage from a LIBRARY Unit Class into
MODULES a Unit Class represent the inclusion of the modules
into a library, which is a group of similar functions under
a general category, such as Tuner commands.

Coding support is provided through the Unit Classes
MAKE and DATASTRU which contains information to help the
software engineer code and debug the source code. The MAKE
Unit Class details the steps necessary to create executable
code from the various modules and libraries. The DATASTRU,
data structure, Unit Class is owned by the MAJORCOM Unit
Class and is used to describe all of the significant data
structures used by the mocules within the major component.

Finally, the PROSEPRO Unit Class supports a pseudo code
language method for describing a module’s function. This
Unit Class is used much like a documentation method, except
it contains documentation on the construction of the module.
This Unit Class is owned by the MODULES Unit Class.

Figure 20 shows the refinement link structure for the
multiple software engineering method used in the development

of TRIAD. The refinement links are represented by the



221

arrows that constitute the ownership of one Unit Class by
another. Although this method is hierarchical, there is no
restriction imposed by the TRIAD Model or TRIAD Environment

that it must be.



PROJECT

MEMBERS USERMAN [msao | r o !

wrnose]  [vcn]  Fororen]
[ ]
o] o] [ o] [oe]

az22

SCHEDULE PHASEN

Fbmmgt:qummmﬂ

IDATASTR” j [Mowms MAKE

Figure 20. TRIAD Multiple Method Unit Ciase Refinements



2e3

Ffom Figure 20 the relationship between the various
methods is apparent. Most of the methods are in small
groups of Unit Classes clustered together. For example, at
the top of the figure, the software life cycle method
organizes the rest of the methods. At the left, is the
documentation method with a small tree of Unit Classes
representing the users manual. Next to the documentation
method is the requirements methocd with several Unit Classes
serially owned by the PHASEI Unit Class. Similarly, the
program structure method is owned by the Programming logic
Unit Class, PHASEII. Only the management method Unit
Classes, HISTORY and REVIEW are attached to most of the high
level Unit Classes and not organized into its own hierarchy.
Further evolution of the management method would indeed
contain some independent Unit Classes that would contain
summarized data, such as a complete project schedule. But
the current management classes are used to contain data at

the point of creation.

7.2.1 DOCUMENTATION METHOD

The documentation and program structure methods will be
used to illustrate the use of the TRIAD Method. Figure 21

shows the user view of the Unit Class USERMAN. Each



224

Component Category is separated by a solid line. The first
Component Category is the one for the Unit Class and
contains the method and Unit Class name with space left in
the center for a descriptive string to be entered whenever a
new Unit is created. 0On the right is the Unit’s serial
number. The next four Component Categories are for the
storage of text strings describing the topic suggested by
the Component Category name. The following 3 Component
Categories can each be replicated which is indicated by the
string "(MORE?)" appearing at the far right. In addition to
being replicated individually, i.e., a Section may be
composed of more than one topic, the indentation of the
category names indicates that the entire‘structure may be
replicated by requesting the replication of a higher level
category. For instance, a document can consist of several
sections each with at least one topic. More than one
document can be stored in this unit, each with at least one

section, consisting of at least ane topic per section.



225

| Contact | |
| Decument | morem |
| section | T cwomem |
| Tepic | T vomen |
| NtRODUE | ome
| usesEEXA | Jums
| ustorco | jume

Figure 21. User Manual (USERMAN) Unit Class



226

Figure 22 shows the user view of the Unit created from
the USERMAN Unit Class. The structure is of course the
same, but the replication of the topic categories is shown.
Only cne line of text appears for each topic, because the
sections are quite long. The trailing dots (....) means
that more text follows. Note also that the Entries
referring to the Unit Classes, INTRODUC, USAGEEX and
LISTOFCO are shown as being refined. This is indicated by
the title text shown in the center and the existence of the

Unit serial number at the far right of the Entry.



227

’ Contact | Dr. Jay Ramanathan

' Document | How to use TRIAD (MORE?) l

| Section ' Getting Started (MORE?) |

! Topic Getting Started (MORE?) |
TRIAD is a shell environment .......

| Topic | Defining the method on paper (MORE?) |
Problem solving methods divide ......

| Topic Using the TRIAD Tuner (MORE?) l
After logging into the IBM system ......

‘ Topic Attributes (MORE?) '
Predefining attributes .......

| INTRODUC | Terminology and Guided Tour | Unit 20 |

I USAGEEXA ' Usage Example | Unit 29 |

| LISTOFCO | TRIAD Commands | Unit 30 '

Figure 22. Completed User Manual (USERMAN) Unit



228

Figure 23}§hows a part of the list of Units created
from the TRIAD Method. The numbers to the left of the Unit
Class name indicates the level of the Unit. For instance
the unit PROJECT is the Initial Unit and is assigned a level
of i. All Units refined from the PROJECT Unit have a level
of 2 and so on. The levels are also indented to impart a
visual image of the levels to the user.

This list serves several purposes, much like the table
of contents bf a book. First it shows each available unit
and gives the serial number, which allows a user to display
it directly without navigating through the network of Units.
Second it summarizes the Units’ contents by showing the Unit
Class name, its title and all units refined from it. Thus

it shows the structure of the method in an ocutline form.

7.2.2 PROGRAM STRUCTURE METHOD

Although Figure 23 is anly a partial list of all of the
Units created from the TRIAD Method Unit Classes, it shows
most of the Units and imparts the structure of the multiple
methods applied in the TRIAD Method. The program structure
method is shown at the bottom of the figure. Unfortunately
the TRIAD Tuner program structure, as shown in Figure 24

does not have an interesting structure, since each operator



229

has a module that is invoked by a command name. Thus, the
expressive power of the method is not directly shown. From
the method definition of the Program Structure method it can
be seen that complex software structures can be represented
with these Unit Classes. The major component Tuners shown
in the MAJORCOM Unit of the figure has three Units refined
from it. The REVIEW Unit describes the experience with a
Tuner prototype. The data structure Units describe the
major data structures used by the tuner routines. Finally
for each routine a MODULES Unit is listed. Each MODULES
Unit describes the implementation of the command in detail.
It also has @ pointer to the file containing the source code
for review or modification.

From these figures it should be noted that the TRIAD
Method attempts to localize information about a concept.
For example, the Program Structure method uses a two tier
structure to organize a program. All of the modules are
owned by the major component. In addition the data

structure descriptions are localized with the major

component.



1. PROJECT TRIAD
Jay Ramanathan

Thorb jorn Andersson

William H. Hochstettler,IIl
Ronnie Sarkar

Robert Vermilyer

Ronald Hartung

James Davenport

2. MEMBER Dr.
2. MEMBER Mr.
2. MEMBER Mr .
2. MEMBER Mr .
2. MEMBER Mr .
2. MEMBER Mr.
2. MEMBER Mr.

Software Engineering Env.

2. USERSMAN Notes for the method designer

Terminology and guided tour
. TERM Unit Class

. TERM Blank Unit

. TERM Unit List

. TERM Instantiating

3. INTRODU
4. TERM Method
4
4
4
4, TERM Tuning
4
4

3. USAGEEX
3. LISTOFCO

. TERM Refining
Usage Example
TRIAD Commands

2. PHASEO Project Objectives
2. PHASE! Overall Architecture
3. REVIEW Suggestions for Product Arch.

3. FUNCTION
3. CONFIGUR

Functional Overview
Configuration Specifications

2. PHASEII | Programming Logic

3. HISTORY
3.MAJORCOM
4, REVIEW

MODULES
MODULES
MODULES
MODULES
MODUL.ES
MODULES
MODULES
MODUL.ES

oS S N S K T S S S S

DATASTRU
DATASTRU
DATASTRU

Reason for the SIL breakdown
Tuner component
Experience with prototype

Method Lists
Blank Units
Attributes
AddAattribute
DeleteAttribute
DeleteUnit
DeleteCategory
NewCategory
Newlnit
PrintBUL
Retitle

Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit
Unit

230

244
245
72
?3
78
70
74

Figure 23. Partial List of Units from the TRIAD Method



MAJORCO!
Tuer

PROJECT
TRIAD b TRIADY

PHASEU

231

MAJORCOM

MAJORCOM
SIL Mook

MAIJORCOM
1L (Quety)

MAJORCOM|
Triad in Triad

MAJORCOM|

HISTORY

DATASTRU|
Hiank Units

MODULES

MODULES

MODULES

NewNode

MODULES

DATASTRU
Lists

DATASTRU
Axzibnes

MODULES

MODULES

MODULES MODULES

NowFeng PriotPFL

Figure 24. Structure of Units for the Tuner Major Component



23a
CHAPTER VIII

TRIAD MODEL EVALUATION

The evaluation of any model is best done by determining
how well the model actually reflects the object being
modeled. This chapter reviews the features of the TRIAD
model and their applicability to software engineering
methods. Software engineering methods are of two general
forms; either textual or representational. Textual methods
merely organize large text collections for convenient use
and comprehension. Representational methods attempt to
model problem solutions or software by using compact
notations, usually graphs.

The TRIAD model models textual software engineéring
methods extremely well. The model supports the storage of
text in its original format as a text type Attribute. In
addition, the text can be partitioned into Unit Classes and
Component Categories within each Unit Class. This feature
allows the text to be subdivideds to manageable pieces. Also
all of the Attributes can be applied to the individual
pieces of text thereby increasing the power and meaning of
the Attributes by specification. The Refinement Linkages

allow a block of text to be refined into more specific

232



233

concepts, creating the ability to organize large blocks of-
text into a network of smaller related pieces. The
Attributes allow descriptive values about the text to be
stored separate from, but physically adjacent to the text
they modify. Additional support is provided by the TRIAD
editor which allows the text to be edited directly within
the Component Entry. Further, the Procedures allow
procedural knowledge about the text to be associated with
Component Categories and Unit Classes, thereby aoffering the
software engineer help in using the method. Secondary links
from one Entry to another Entry allows the expression of a
relationship that is different from that of the Refinement
Linkage (ownership).

Support for representational types of software
engineering methods, such as SADT, data flow diagrams or
flowcharts is similar to textual method support except for
the meaning of the Refinement Linkage and the user view of
the method. The representational methods create diagrams of
software and to be effectively supported by a software
engineering environment, these pictures must be represented
and displayed. Although TRIAD depends heavily upon the
graphical interface to draw and edit the pictures, the TRIAD
Model has a structure that allows a direct translation from

the model to a graphic representation.



234

The Dataflow Diagram example presented in Chapter II
illustrates the features of the TRIAD model that represent
graphical methods. The Refinement Linkage is used to
represent the arcs in the graphical methods. The Component
Catégory contains an Attribute to staore the text usually
contained within the nodes of the graph or attached to the
arc. The icon Attribute associated with the Unit Classes,
allows the method designer to design and name an icaon
independent of its use in the method. These three features
of the TRIAD Model make it very easy to represent directed
graph based methods. Using this representation, a graphics
interface can display the graphical representation of the
software which the user can view and manipulate.

Further, the Procedures provide the same capabilities
for graphical software engineering methods as for textual
software engineering methods, namely to encode procedural
knowledge about the software engineering method and its
application.

The Procedures in addition to providing the means for
encoding the rules and policies of a method are used to
create extended commands and build interfaces to existing
tools. The Procedures are implemented using a procedural
language provided by the TRIAD model implementation. Also
provided by the implementation are primitives for navigation
through the network of Units and manipulation of the TRIAD

model elements. These facilities allow extended commands to



235

be built, which accomplish tasks specific to a method and
even more specific to the software being implemented. For
example, a Procedure can be written to navigate through a
call structure method and collect the percentage completed
of the coding of each module. The collected percentages can
be combined to represent a project completion percentage.
This type of processing is likely to be repeated
periodically by a project manager te evaluate the current
progress of the project. By creating a Procedure, giving it
a distinct command name and then putting references to the
command name in the places in the method where the manager
is likely to request the information generated by the
command, the user is assisted in his job.

Tool interfaces are also implemented using the
Procedures because the navigation and extraction primitives
pfovide the means of placing information into a faormat
acceptable to tools. The text farmatter example in
Chapter VI demonstrates the power that the tool interface
provides to the user to exploit existing products. The
significant point of the text formatter interface is that
most of the interface was done by using the features already
provided by the TRIAD model. No additional "fudging" was
required. The formatter Attributes were created using the
Attribute facility provided. The text extraction primitives
were used to get the text from the Entries in the Entries

and then the faormatter was invoked.



236

8.1 RESEARCH CONTRIBUTIONS

This dissertation described a model for representing
multiple software engineering methods in a software life
cycle. Due to the number and difference in software
engineering methods for the various phases of the software
life cycles this model provides a general representation for
identifying the basic elements in most methods. Further,
computer support can be provided to models that previously
were unsupported and to new methods not yet defined, by
describing the method using the model and by using the
computer support package provided with the implementation of
the model.

The model was implemented to demonstrate that the model
specification was capable of being implemented. The
implementation was used to evaluate the model and gain
insight into further extensions and enhancements to the
model. By expressing several software engineering methods
in the model, implementation experience with multiple

methods was also gained.



237

8.2 FUTURE ENHANCEMENTS

The ability of the TRIAD Model to represent methods is
clear both by analysis and the application of the model to
various methods. Future work in the suppor£ of methods is
along the following divergent lines:

o Knowledge based support of software engineering methods,

a} Specialization of TRIAD Model elements to support
classes of methods and

o Integration of operating system and database concepts
into the implementation to improve performance of the
prototype.

Knowledge based support of software engineering methods
will focus more Al and expert systems technigues on software
engineering tasks. This work can proceed from a solid base
of the TRIAD Model, which can be used to represent
information and knowledge. The application of AI techniques
will still be in the assisting role rather than one of
automatic programming. Simple applications of Al are
possible by using Procedures to implement local procedures
representing expert knowledge about design and coding. Open
guestions still remain as to the best way of building these
procedures. The usual technique of using a general purpose
praocedural language may not be as good as a declarative

language.



238

The current approach of writing Procedures using
implementation provided primitives within a procedural
programming language provides the software engineer
sufficient power, but not much help in applying a method.
Advances in languages to assist in the creation of these
Procedures will increase the ability of method users to
utilize the power of the model without an investment in time
and effort similar to writing programs. The creation of
such a language implies that a greater understanding of the
requirements of such Procedures is available. At this time,
experience with the model and its implementation has not
produced sufficient knowledge to design a higher level
Procedure language. However, as experience with the model
is gained, insight on the use of the Procedures may provide
the means for designing a easier to use Procedure
implementation language.

During the creation and application of the software
engineering methods to support the TRIAD development, it was
clear that certain Attributes were necessary to support the
methods. As more features were added; more special
Nttributes were required. This trend is analogous to
database research where general models have been modified
and extended to support a specific class of problems with
built-in types [SUB&]1. This same process of specializing
will continue both in the software engineering method domain

as more methods are applied using TRIAD, and also as new



239

problem domains are explored.

Finally, the TRIAD implementation as a prototype,
adequately demonstrated the concepts of software engineering
environments to support multiple software engineering
methods. To learn more about the support a software
engineer needs on the job, a more responsive implementation
is required. The capabilities of the implementation need to
be increased by ensuring data integrity and allowing
multi-user access. Although these are primarily database
implementation issues, the use of IBM’s SQL demonstrated
that the loss of performance is not necessarily offset by a
gain in power and function. TRIAD has many of the aspects
of a database (data model and query langﬁage), therefore,
TRIAD needs to use the pbysical level access techniques of a
database system to improve its performance. If TRIAD’s
performance can be improved, it will become a laboratory for
studying the definition and use of software engineering

methods in particular and environments in general.



ALFO8S

AMBRB4

BERG7%9

BIGGBO

BOEH84

BORG8S

BRODB4

CAIN77

CHEN76

LIST OF REFERENCES

ALFORD, MACK, "SREM at the Age of Eight: The
Distributed Computing Design System", IEEE
Computer, Volume 18, Number 4, (Mar 1985) p. 36-464.

AMBRIOLA, V., GAIL E. KAISER AND ROBERT J. ELLISON,
"An Action Routine Model for ALOE", Tech. Report,
Dept. of CS, CMU, August, 1984,

BERGLAND, G.D.s "Structured Design Methodolagies",
Tutorial: Software Design Strateqgies G.D. Bergland
editor, IEEE, Long Beach, Ca., 1979, p. 162-181,

BIGGS, CHARLES L., AND WILLIAM ATKINS, Managing the
Systems Development Process, Prentice-Hall,
Englewood NJ, 1980.

BOEHM, BARRY W. AND ET AL, "A Software Development
Environment for Improving Productivity", I1EEE
Computer,; Volume 17, Number &, (June 1984),

p. 30-44,

BORGIDA, ALEXANDER, "Features of Languages for the
Development of Information Systems at the
Conceptual Level", IEEE Software Volume 2, Number
1, (January 1985), p. 63-72.

BRODIE, MICHAEL L., "On the Development of Data
Models", On Conceptual Modeling, Brodie,
Mylopoulos, Scmidt, eds., Springer-Verlag, 1984,
Chapter 2, p. 19-47.

CAINE, STEPHEN H. AND E. KENT GORDON, "PDL--A Tool
for Software Design", Tutorial on Software Design
Tools, IEEE, Long Beach, Ca., 1977, p. 168-173.

CHEN, PETER, "The Entity-Relationship
Model—-Towards a Unified View of Data", ACM

Transactions on Database Systems, Volume 1, Number
1, (March 1976) p. 9-36.

240



CHIK8S

DAHL 72

DATE77

DAVEBSL

DAVIB3

DEMA7?

DEMES2

DOLO78

FIKEBS

FREE77

HAMMSB1

241

CHIKOFSKY, ELLIOT AND DANIEL TEICHROEW, "Generating
Flexible Methodology-Specific System Development
Environments", The Proceedings of the ACM-IEEE
SOFTFAIR 11, (December 198S), p. 24-31.

DAHL, 0-A, E. W. DIJKSTRA AND C. A. R. HOARE,
Structured Programming, Academic Press, New York,
NY, 1972, 220 pages.

DATE, C.J., An Introduction to Database Systems,
Addison-Wesley, Second Editiaon, 1977.

DAVENPORT, JAMES, The Use of a Relational Database
an a Software Engineering Environment, Masters Th.,
in progressy The Ohio State University, Columbus,

Ohioy, December 1986.

DAVIS, WILLIAM S., Tools and Technigues for

Structured Systems Analysis and Design,
Addison~-Wesley, Reading, Ma, 1983, 187 pages.

DEMARCO, TOM, Structured Analysis and System
Specification", Prentice Hall, New York, NY, 1978,
339 pages.

DEMETROVICS, JANOS, ELOD KNUTH AND PETER RADO,
"Specification Meta Systems", lEEE Computer, Volume
15, Number 5, May 1982, p. 29-35.

DOLOTTA, T.A., R.C. HAIGHT AND J.R. MASHEY, "The
Programmer’s Workbench", The Bell System Technical
Journal Volume 37, Number &, (July-August 1978),
p. 2177-2200.

FIKES,RICHARD AND TOM KEHLER, "The Role of
Frame-Based Representation in Reasoning"s
Communications of the ACM, Volume 28, Number 9,
Sept. 1985, p. 904-920.

FREEMAN, PETER AND ANTHONY I. WASSERMAN (EDS.),
Tutorial gn Software Design Techniques, and Ed.,
IEEE, Long Beach, Ca., 1977, 288 pages. Number ,

HAMMER, MICHAEL, "Database Description with SDM: A
Semantic Database Model", ACM Transactionsg an
Database Systems, Volume &6, Number 3, (Sept. 1981)
p. 351-386.



HART8?

HEAC79

IBMD

IBMG

IBMR

IBMX

JACK?78

KENT79

KNUT&S

KU0E3

LAUBS82

MATHBS

242

HARTUNG, RONALD, The desiqn and Application of
Graphics for TRIAD, Ph.D. Th., in progress, The
Ohio State University, Columbus, Ohio, March 1987.

HEACOX, H. C., "RDL: A Language for Software
Develaopment", ACM SIGPLAN Notices Volume 14, Number
12, December 1979, p. 71-79.

IBM, Document Composition Facility: Users Guide,
4th edition, IBM Corporation, New York, 1983, 4135

pages.

IBM, GDDM Reference Manual, IBM Corporation,; New
York, 1983, 321 pages.

IBM, System Product Interpreter Reference, First
Edition, IBM Corporation, New York, 1983, 1&0
pages.

IBM, System Product Editor Reference, edition, IBM
Corporation, New York, 1982, 78 pages.

JACKSON, MICHAEL A., Principles of Program Design,
Academic Press, New York, NY, 1975, 297 pages.

KENT, WILLIAM, "Limitations of Record-Based
Information Models", ACM Transactions on Database
Systems, Volume 4, Number 1, (March 1979,

p. 107-131.

KNUTH, D. E., "Semantics of Context-free
Languages", Mathematical Systems Theory Volume 2,
Number 1, (1968), p. 127 1435.

Kugs J. C.s Design and Implementation of a
Form—Based Software Environment, Ph.D. Th., The

Ohio State University, Columbus, Ohio, August 1983,
328 pages.

LAUBER,; RUDOLF, "Development Support Systems", IEEE
Computer Volume 15, Number 35, May 1982, pp. 34-46.

MATHIS, ROBERT, F., "The Last 10 Percent", IEEE
Transactions gn Software Engineering, Volume 12,
Number 6, June, 19846, p. 705-712.




243

MCKNB8S MCKNIGHT, WALTER L., A Meta System for Generating:
Software Engineering Environments, Ph.D. Th., The
Ohio State University, Columbus, Ohio, June 19835,
277 pages.

MINS75 MINSKY, MARVIN, "A Framework for Representing
Knowledge", The Psycholoqy of Computer Vision,
Patrick Henry Winston, Ed., McGraw-Hill, 1975,
p. 211-277.

PARK78 PARKER, JOHN A., "A Comparison of Design
Methodologies", ACM SigSoft Software Engineering
Notes, Volume 3, Number 9, October 1978.

PARN7% PARNAS, DAVID L., "On the Criteria to be used in
Decomposing Systems Intoc Modules", vommunications
af the ACM, Volume 13, Number 12, (Dec. 1272),
p. 131-136.

PARNSS PARNAS, DAVID L., PAUL C. CLEMENTS AND DAVID M.
WEISS, "The Modular Structure of Complex Systems',
IEEE Transactions gn Software Engineering, Volume
11y Number 3, (Mar. 1985), p. 259-266.

PETE79 PETERS, LAWRENCE J. AND LEONARD L. TRIPP,
"Comparing Software Design Strategies", Jutorial:
Software Design Strategies, Bergland 243 Gordon
(eds.)s IEEE Long Beach, Ca., 1979, p. 185-188.

POLA78 POLAN, MARVIN AND FRED J. SARISONEN, Software
Design Methodology Interim Report, Teledyne Brown
Engineering, Huntsville, Al., May 1978.

PYEL? PYE, DAVID, The Nature of Design, Studio
Vistal/Reinhold, New York, NY, 1975.

RAMABS RAMAMOORTHY, C.V., V. GARG AND A. PRAKESH,
"Programming In The Large, lEEE Transactions on
Software Engineering; VYolume 12, Number 7, July,
1986 p. 769-783.

RICH83 RICH, ELAINE, Artificial Intelligence, McGraw-Hill,
New York, NY, 1983, 434 pages.

ROSS77a ROSS, DOUGLAS T. AND KENNETH E. SCHOMAN,JR.,
“Structured Analysis for Requirements Definition",
IEEE Transactions gn Software Engineering, Volume
3, Number 1, (Jan. 1977), p. 6-135.




244

ROSS77b ROSS, DOUGLAS T., "Structured Analysis(SA): A

ROSS8S

RUBIBS

SCHE78

SOFT81

SONIB3

STAY77

STEV77

SuUBs

TEIC77

Language for Communicating Ideas", lEEE
Transactions on Software Engineering, Volume 3,
Number 1, (Jan. 1977), p. 16-33.

ROSS, DOUGLAS T. "Interview: Douglas Ross Talks
about Structured Anslysis", IEEE Computer Volume
18, Number 7, (July 1985), p. 80-88.

RUBIN, HOWARD A., D.C. VON KLEECK AND DAVID BARTZ,
"Integrating Software Development Estimation,
Planning, Scheduling and Tracking: The PLANMACS
System", Proceedings of the ACM-IEEE SOFTAIR II,
(Dec. 1985), p. 24-31.

SCHETHTER, DAVID, "The Skeleton Program
Methodology"'", Datamation November, 1978,
p. 147-150.

SOFTECH,s INC., "Integrated Computer-Aided
Manufacturing (ICAM)", Tech Report, Materials
l.aboratory, Wright-Patterson AFB, June, 1981, 141
pages.

SONI, D. A., Design and Modeling of TRIAD - An
Adaptable, Integqrated Software Environment,
Environment, Ph.D. Th., The 0Ohio State University,
Columbus, Ohio, June 1983, 247 pages.

STAY, J. F. "HIPO and Integrated Program Design",
Tutorial on Software Design Techniques, Freeman and
Wasserman (eds.), IEEE Long Beach, Ca., 1977,

p. 174-178.

STEVENS, W. P., G. J. MYERS AND L. L. CONSTANTINE,
“Structured Design'", Tutorial on Software D=zsign
Technigues,; Freeman end Wasserman (eds.), IECE Long
Beach, Ca., 1977, p. 27-100.

SU, STANLEY Y. W., "Modeling Integrated
Manufacturing Data with SAM*", IEEE Computer,
Volume 19, Number 1, January 1986, p. 34-49.

TEICHROEW, DAVID AND ERNEST A. HERSHEY,III,
"PSL/PSA: A computer-Aided Technique for Structured
Documentation and Analysis of Information
Processing Systems", IEEE Transactions on Software
Engineering, Volume 3, Number 1, (Jan. 1977)

p. 41-48,




TSIic8a

WINO72

YAUBS

YOUR78

YOURB6

243

TSICHRITZIS, DIONYSIS AND FREDERICK H. LOCHOVSKY,
Data Models, Prentice-Hall, 1982, 381 pages.

WINOGRAD, TERRY "Frame Representations and the
Declarative/procedural Controversy", Representation
and Understanding, Bobrow and Collins (eds.),
Academic Press, 1975, p. 185-210.

YAd, S.5. AND J. J-P. T5AI, "A Survey of Software
Design Techniques", IEEE Transactions on Software
Engineering, Volume 12, Number &, July, 1986,

p. 703-721.

YOURDON, EDWARD AND LARRY L. CONSTANTINE,
Structured Design,; Second Ed., Yourdon Press, New
York, 1978.

YOURDON, EDWARD "What Ever Happened to Structured
Analysis", Datamation, Volume 32, Number 11, June
19846, p. 133-138.



